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Abstract

Background: Stress is an important predictor of mental health problems such as burnout and depression. Acute stress is
considered adaptive, whereas chronic stress is viewed as detrimental to well-being. To aid in the early detection of chronic stress,
machine learning models are increasingly trained to learn the quantitative relation from digital footprints to self-reported stress.
Prior studies have investigated general principles in population-wide studies, but the extent to which the findings apply to
individuals is understudied.

Objective: We aimed to explore to what extent machine learning models can leverage features of smartphone app use log data
to recognize momentary subjective stress in individuals, which of these features are most important for predicting stress and
represent potential digital markers of stress, the nature of the relations between these digital markers and stress, and the degree
to which these relations differ across people.

Methods: Student participants (N=224) self-reported momentary subjective stress 5 times per day up to 60 days in total (44,381
observations); in parallel, dedicated smartphone software continuously logged their smartphone app use. We extracted features
from the log data (eg, time spent on app categories such as messenger apps and proxies for sleep duration and onset) and trained
machine learning models to predict momentary subjective stress from these features using 2 approaches: modeling general relations
at the group level (nomothetic approach) and modeling relations for each person separately (idiographic approach). To identify
potential digital markers of momentary subjective stress, we applied explainable artificial intelligence methodology (ie, Shapley
additive explanations). We evaluated model accuracy on a person-to-person basis in out-of-sample observations.

Results: We identified prolonged use of messenger and social network site apps and proxies for sleep duration and onset as the
most important features across modeling approaches (nomothetic vs idiographic). The relations of these digital markers with
momentary subjective stress differed from person to person, as did model accuracy. Sleep proxies, messenger, and social network
use were heterogeneously related to stress (ie, negative in some and positive or zero in others). Model predictions correlated
positively and statistically significantly with self-reported stress in most individuals (median person-specific correlation=0.15-0.19
for nomothetic models and median person-specific correlation=0.00-0.09 for idiographic models).

Conclusions: Our findings indicate that smartphone log data can be used for identifying digital markers of stress and also show
that the relation between specific digital markers and stress differs from person to person. These findings warrant follow-up
studies in other populations (eg, professionals and clinical populations) and pave the way for similar research using physiological
measures of stress.

(JMIR Mhealth Uhealth 2023;11:e37469) doi: 10.2196/37469

JMIR Mhealth Uhealth 2023 | vol. 11 | e37469 | p. 1https://mhealth.jmir.org/2023/1/e37469
(page number not for citation purposes)

Aalbers et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:h.j.g.aalbers@tilburguniversity.edu
http://dx.doi.org/10.2196/37469
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

mobile health; mobile phone; digital phenotype; digital biomarker; machine learning; personalized models

Introduction

Background
Stress is an important predictor of mental health problems such
as burnout [1] and depression [2]. How stress influences mental
health depends on its duration. Stress with a duration of minutes
to hours (acute stress) is commonly considered an adaptive
psychophysiological response, whereas stress lasting for weeks
to months or even years (chronic stress) is believed to have
adverse psychological and physiological consequences [3].
Given its potential effects, early detection and treatment of
chronic stress is important to prevent mental health problems.

As asking individuals to consistently self-monitor and self-report
stress over extended periods is a difficult, costly, and
time-intensive procedure [4], researchers have started developing
algorithms to unobtrusively detect stress from passively logged
data, such as smartphone app use log data [5]. If successful,
such algorithms open opportunities for early detection of the
tipping point where acute stress turns into chronic stress,
possibly unlocking earlier possibilities for scalable interventions,
such as smartphone-based cognitive behavioral therapy with
chatbots [6].

Previous research suggests that smartphone use log data (among
other passively logged data sources) might be used to recognize
how stressed a person feels [5,7-10], with pioneering studies in
college students using call and SMS text messaging log data
(among others) as predictors [9,10]. However, following
technological advances that made smartphones more powerful,
use of these devices has evolved, and college students now
typically access their smartphone for activities other than calling
or SMS text messaging, such as using social media [11]. As a
result, more research is required to identify whether stress might
be recognized using smartphone app use patterns with high
relevance to the current generation of students. We, therefore,
extend previous work in the domain [5,7-10] to a large sample
of contemporary college students and explore to what extent
machine learning models can leverage features of smartphone
app use to recognize momentary subjective stress and which of
these app use features are most important for predicting
momentary subjective stress and represent potential digital
markers of stress. Inspired by recent findings in clinical
psychology [11,12] and communication science [13-16], we
then shed light on the nature of the relations between these
potential digital markers and stress and the degree to which
these relations differ from one person to another. Following
related machine learning research on mood recognition [17],
we also assess how important digital markers are relative to
temporal features: time of day, day of the week, day of the
month, and before COVID-19 versus during COVID-19
lockdown.

Digital Markers
Digital markers are digital footprints, such as features of
smartphone use log data, that are related to psychological or

biological states [18], such as stress. Such features might
represent any quantification of raw log data of digital devices,
ranging from simple (eg, time spent using a device) [19] to more
complex (eg, daily life patterns derived from device use) [20].
In this study, we investigate two types of potential digital
markers of stress: (1) use of different types of smartphone apps
(eg, duration and frequency of social network, messenger, and
video apps) and (2) sleep proxies derived from smartphone app
log data.

Smartphone Use Behaviors as Potential Digital
Markers
Smartphones enable individuals to perform a wide range of
behaviors with profound psychological meaning and relevance
to momentary subjective stress. Extant evidence, however,
suggests a complex and nuanced relation between smartphone
use and mental health, with different types of app use showing
different patterns of association. For example, smartphone use
behaviors with particular theoretical relevance to stress are
calling, mobile messaging, and using social media, but recent
work on passively logged data found depression relates
negatively to calling [21], whereas it relates positively to social
media use [22]. Moreover, research suggests that relations
between smartphone app use and mental health differ from
person to person [12-16]. Altogether, with respect to the
association between smartphone use and mental health, these
and other findings [23,24] indicate that smartphone behaviors
could be informative about stress, but open questions remain.

Sleep Proxies as Potential Digital Markers
Smartphone log data not only captures smartphone behavior
with relevance to stress but might also be used to quantify sleep,
which is a universal behavior related to stress [25]. As the
human sleep-wake cycle closely aligns with smartphone app
use patterns, different disciplines have leveraged smartphone
log data (eg, call records, screen on-off status, and screen taps)
to estimate sleep onset, offset, and duration [20]. To explore if
such sleep proxies might be useful for stress recognition, we
applied a rule-based algorithm (similar but not identical to a
recent study by Massar et al [20]) to extract proxies for sleep
duration and sleep onset from smartphone app log data and
included these as features in our models.

Explainable Artificial Intelligence
One potential avenue to identify digital markers is to (1) train
machine learning models to find a mathematical mapping from
digital markers to self-reports of momentary subjective stress
and (2) apply explainable artificial intelligence (eg, Shapley
values [26]) to clarify how these models make predictions.
Applying explainable artificial intelligence is necessary because
the structure of some powerful models (eg, random forest [RF])
preclude the straightforward interpretation of parameters that
linear statistical models have.

By taking this approach, we aim (1) to identify digital markers
by testing which features of smartphone use log data a model
uses to predict momentary subjective stress and (2) to understand
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the nature of the relation between these digital markers and
stress. For instance, time spent on messenger apps might be
important for the prediction of stress and negatively related to
stress, suggesting that individuals tend to spend less time on
these apps when feeling stressed. This could potentially indicate
that stress reduces social interaction or vice versa.

Nomothetic Versus Idiographic
When training machine learning models on human-subjects
data, it is important to take into account that individuals differ
from another. Hence, both machine learning [27] and behavioral
scientists [28] have underlined the importance of ensuring that
models of human-subjects data are applicable to the individuals
they pertain to. This is certainly also important in the domain
of digital markers of stress. Behavioral scientists have shown
that relations between digital trace data and psychological
self-reports differ across individuals [19]. In parallel, machine
learning researchers have demonstrated that personalized
models, which are known as idiographic models in behavioral
science, tend to predict subjective stress more accurately than
nonpersonalized models [27], which are also referred to as
nomothetic models. Naturally, these findings go hand in hand:
a personalized (idiographic) model will more adequately capture
person-specific dependencies between digital trace data and
stress and therefore should make more accurate predictions than
a nonpersonalized (nomothetic) model. In this study, we
implement, evaluate, and compare both approaches.

Objectives
This study has four complementary aims to explore: (1) to what
extent machine learning models can leverage features of
smartphone app use log data to recognize momentary subjective
stress in individuals, (2) which of these features are most
important for predicting stress and represent potential digital
markers of stress, (3) the nature of the relations between these
digital markers and stress, and (4) the degree to which these
relations differ from one person to another.

Methods

Participants
We followed reporting guidelines recommended for experience
sampling studies [29]. For a preregistered data collection [30],
we used the university participant pool to recruit 247 student
participants with an Android operating system on their primary
phone, 224 (90.7%) of whom we included for analysis. Their
average age was 21.97 (SD 3.04) years and the majority were
female (125/224, 55.8%). We excluded (1) participants with
operating systems other than Android on their primary phone
and (2) participants with insufficient survey responses for
training idiographic machine learning models (<6). Most
participants (186/224, 83%) started participation before the first
(reported) local infection of SARS-CoV-2 and a minority
(38/224, 17%) after. With the exception of 2 participants, all
participants had been active in our study before the first
nation-wide lockdown. Throughout the study, the original
(Wuhan) strain of SARS-CoV-2 was dominant.

Procedure

Ethics Approval
Ethics approval was issued by the Tilburg University Ethics
Committee (approval code REDC 2019/94c).

Onboarding
Participants were recruited through the university participant
pool. After receiving web-based information through Qualtrics
(Qualtrics XM), having been offered a possibility to ask
questions, and signing an informed consent form, participants
followed web-based instructions to install 2 apps on their
smartphone. After completing these instructions, the participants
attended an onboarding session in which we provided additional
information, offered further opportunity to ask questions, and
motivated the participants to participate to the best of their
ability.

Technology
All participants installed 2 apps on their Android device: Ethica
Data [31] and mobileDNA [32]. Ethica Data is an app that
prompts participants to complete brief surveys on their
smartphone (ie, experience sampling). MobileDNA is an app
that unobtrusively logs a person’s smartphone app use,
smartphone notifications, and location (ie, passive logging).

Sampling Scheme
The data collected in this study are part of a larger research
project with other questions that required a so-called
measurement burst design (1 period of intensive data collection
followed by a break followed by another period of intensive
data collection) [33]. The important advantage of this procedure
is that it reduces participant burden, while capturing information
on a larger timescale. Hence, in a 4-month period, Ethica
notified the participants 5 times a day for a maximum of 60
days (30 days in month 1 and 30 days in month 4) at
pseudorandom times between 8:30 AM and 10:30 PM to
complete a 10-item survey (approximately 1 minute to complete)
on stress and other constructs (fatigue, procrastination, and
mood), whereas mobileDNA continuously logged smartphone
app use. Following an initial push notification, each survey was
available to the participant for 50 minutes. After 45 minutes,
they received a reminder notification. After 50 minutes, the
survey expired. The participants were allowed to catch up on 1
missed survey per day by starting and completing a new survey.

Monitoring Protocol
We actively monitored participant compliance and motivated
participants with weekly emails containing personalized
feedback. When a participant failed to complete many
consecutive surveys, we sent an email to inquire why they could
not comply with the study protocol and how any issues might
be resolved. In a limited number of cases, the participants did
not respond to such emails, in which case we contacted them
through a phone call. The participants were compensated with
course credits for research participation and were entered into
a raffle comprising 20 prizes of 15 euros (US $22.06).
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Compliance
The participants (N=224) completed a total of 44,381 surveys
(198 per person on average). Though data collection spanned
the introduction of the COVID-19 pandemic lockdown, the
median participant remained in the study across 4 months. In
the sample we analyzed, the median participant completed 205
surveys (SD 87.42) and had 3072 hours of smartphone use log
data. The median time difference between receiving the initial
notification and completing the survey was 6 minutes (SD 14.26;

refer to Figure 1 for a histogram). Reasons for noncompliance
ranged from technical difficulties (eg, not receiving any
notifications and broken or lost smartphone) to not being able
to complete a survey (eg, waking up too late and receiving a
notification during work or lecture) to personal reasons (eg,
attrition because of COVID-19 pandemic–related personal
problems or collecting sufficient course credits). Figure 2
visualizes how compliance rate changed from the first to the
last day of the study.

Figure 1. Distribution of the time difference between receiving the initial notification and completing the survey (in minutes).

Figure 2. Daily compliance rate over time. To determine daily compliance rate, we computed the percentage of survey responses that were received
on a given participation day relative to the total number of surveys to be sent each day based on our original sample size (224×5=1120). If, for instance,
all participants completed 4 out of 5 surveys on their first day of participation, daily compliance equals 80%.

Measures
To measure participants’ current (ie, in-the-moment) subjective
level of stress, we used the Stress Experience Sampling Scale
[34]. This scale consists of 2 items on a 7-point Likert scale
ranging from 1 (not at all) to 4 (moderately) to 7 (very much):
“Right now, I feel relaxed” and “Right now, I feel stressed
(tense, restless, nervous or anxious).” The 2 items have an
adequate intraclass coefficient (>50% of variance because of

within-person fluctuations) and acceptable within-person
reliability as assessed by within-person omega (ω=.71). We
calculated an unweighted average of the 2 items and subtracted
each participant’s average level of stress from the resulting
values (ie, within-person centering).

Textbox 1 provides an overview of the features included in this
study. We analyzed three categories of features: (1) smartphone
use behavior, (2) sleep, and (3) time. As the raw values of these
features are on vastly different scales, which can dramatically
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impact model performance, we scaled all features to a range
between 0 and 1 using MinMaxScaler in sklearn [35], based on
the minimum and maximum values in the training data.

To extract time spent on different smartphone app categories,
we first categorized apps using a coding scheme that maps app
names (eg Whatsapp [36]) to 1 of the 18 major categories
(Textbox 2; these core categories represent 4,046,581/5,277,494,
76.68% of all app events). Then, during the 60 minutes before
each self-report of stress, we calculated (1) the total time spent
on all apps in a category (duration) and (2) the total number of
times apps in a category had been accessed (frequency).

To extract sleep duration and sleep onset proxies from the raw
smartphone app log timestamps, we used an algorithm similar

(but not identical) to a previously validated rule-based algorithm
[11] (refer to Multimedia Appendix 1 for a description of our
approach), an algorithm that was found to be strongly associated
with actigraphy-based and self-reported sleep duration and
onset.

To extract time features (ie, hour of the day, day of the week,
day of the month, and lockdown status) from the raw self-report
timestamps, we used pandas.datetime in Python 3.9.9 [37]. In
the interest of model simplicity, we recoded day of the week
into a binary variable (weekday=0 and weekend=1) rather than
treating this variable as a categorical variable. We further coded
lockdown status as a binary variable (before COVID-19
lockdown=0 and during COVID-19 lockdown=1) based on the
lockdown timing in the Netherlands.

Textbox 1. Overview of the features included in models.

Smartphone use behavior

• Time (seconds) spent on smartphone app category X in the past 60 minutes

• Frequency (count) of opening smartphone app category X in the past 60 minutes

Sleep

• Sleep onset (hours and postmidnight hours >24)

• Sleep duration (hours)

Time

• Hour of the day (0 to 23 and starting at midnight)

• Day of the week (0=weekday and 1=weekend)

• Day of the month (0 to 31)

• COVID-19 (before lockdown=0 and during lockdown=1)

Textbox 2. Smartphone app categories and examples of apps per category.

• Browser: Chrome and Opera

• Calling: default dial apps

• Camera: default camera apps

• Dating: Tinder and Grindr

• Email: Gmail and Outlook

• Exercise: RunKeeper

• Food and drink: UberEATS

• Gallery: default gallery apps

• Game: CandyCrush

• Messenger: WhatsApp

• Music and audio: Spotify

• Productivity: Microsoft Word

• Shared transportation: 9292OV (Dutch public transport)

• Social network: Facebook, Instagram, and Twitter

• Tracker: pedometer apps

• Video: YouTube and Netflix

• Weather: default weather apps

• Work: StudentJob and EmployeeApp
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Stress Recognition Models

Model Types
We trained 3 different types of machine learning models: least
absolute shrinkage and selection operator (LASSO) regression,
support vector regression (SVR), and RF regression. We trained
all models using a nomothetic and an idiographic approach
(explained in the section Model Cross-Validation). For brevity
and clarity, we prepend an “N” to the abbreviations of our
nomothetic models (ie, N-LASSO, N-SVR, and N-RF) and an
“I” to the abbreviations of our idiographic models (ie, I-LASSO,
I-SVR, and I-RF).

Model Cross-Validation
Generally, when we perform cross-validation (CV), we (1) split
the data into train and test data, (2) specify a range of values
for a model’s different hyperparameters (ie, researcher-specified
parameters that control model complexity), (3) identify the best
hyperparameters per model using k-fold CV within the training
set, and (4) evaluate each model based on predictive accuracy
for the test data. In what follows, we outline how we
cross-validated nomothetic and idiographic models.

To train nomothetic models, we applied a user split to
distinguish between train and test data. We first used group
k-fold CV (GroupKFold in sklearn [35]) to partition the data
into 5 subsets. A total of 4 subsets contained data from 45
participants, and 1 subset contained data from 44 participants.
We then selected 4 subsets (train data) to train a model. For
training the model, we used 5-fold grid search CV
(GridSearchCV in sklearn [35]) to minimize each model’s
default sklearn error metric (refer to Multimedia Appendix 2
for tuned hyperparameters and minimized error metrics). After
training the model, we let the model make predictions on the
data subset we did not include in training (test data; ie, all
observations of participants excluded from training). Finally,
we evaluated the accuracy of these predictions. We repeated
this process until each subset of the data had been left out of
training once and did so for all models.

To train idiographic models, we applied a time split to
distinguish between train and test data. We iteratively selected
1 participant’s data to train and test models only on these data.
For each person, we assigned each participant’s first 80%
observations to a train data set and their final 20% observations
to a test data set and trained each model (SVR, RF, and LASSO).
We applied 5-fold grid search CV to each participant’s train
data to optimize hyperparameters. As the number of idiographic
models to train is much larger, we applied 5-fold randomized
search CV rather than grid search CV for training RFs, which
are more computationally expensive than LASSO and SVR.
Grid search CV always uses a larger number of hyperparameters
than randomized search CV because the latter trains models on
a random subset of all the hyperparameter settings used by the
former. Randomized search CV considerably speeds up training
time and makes training a large number of RF models more
feasible. Finally, we let trained models make predictions on the
individual’s test data (ie, final 20% observations) and evaluated
the accuracy of these predictions.

Model Evaluation
To evaluate the accuracy of models, we used Spearman rho
rank-order correlation and mean absolute error (MAE) as
evaluation metrics. Spearman rho rank-order correlation
indicates whether a model tends to predict greater values when
an individual feels more stressed without assuming a linear
relation. We consider a model to perform above chance for a
given individual if the Spearman ρ between predictions and
self-reports between predictions and self-reports has a P value
below .05.

Lower MAE values indicate a more accurate model. We
consider the MAE to be an intuitive metric to assess predictive
accuracy on a target variable measured on a 7-point Likert scale,
as it allows us to make statements such as “on average, the
model mispredicts momentary subjective stress by ±0.80 points
on a 7-point Likert scale).” To evaluate if our models perform
better than random guessing, we compare against the MAEs of
a “naive” but person-specific baseline model. This “naive”
baseline model always predicts an individual’s average level of
stress.

Model Explanation
One of the challenges of machine learning approaches is to
understand the results, as they are more complex and therefore
less intuitive than standard statistical approaches. To explain
models, we use the Shapley additive explanations (SHAP)
library [26] implemented in Python 3.9.9 [37] to calculate and
visualize Shapley values. Shapley values can be used to
determine (1) which features are most important in a model and
(2) how features are related to model predictions.

Results

Recognizing Momentary Subjective Stress
Table 1 provides an overview of how accurately nomothetic
models predict out-of-sample data. Model predictions correlated
positively and significantly with self-reports in a majority of
participants for N-LASSO (116/224, 51.3%), N-SVR (120/224,
53.6%) and N-RF, with N-RF performing best in terms of
percent significant results (124/224, 55.4%). The median
correlation between predictions and self-reports was weak for
all models (between 0.15 and 0.19). Correlations also differed
between participants: in 60 participants, the positive correlation
was moderate or larger (ρ>0.3), whereas it was negative (range
P<.001 to P=.049) in 2.2% (5/224) of people. In the median
participant, models on average mispredicted momentary
subjective stress by approximately 0.8 points on a 7-point Likert
scale (MAE of 0.84; scale range: 1=“Not at all,”
4=“Moderately,” and 7=“Very much”). The MAE of nomothetic
models varied across individuals, but for 89.3% (200/224) of
participants, the person-specific baseline outperformed all
nomothetic models (refer to the sixth column in Table 1),
followed by N-LASSO (20/224, 8.9%) and N-SVR (4/224,
1.8%). N-RF did not outperform the other models in terms of
MAE.

Thus, nomothetic models make predictions that weakly and
positively correlate with actual stress self-reports for the
majority of participants (up to 124/224, 55.3%). This means
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that when these participants, who were not included in the
training data set, feel stressed, the model tends to output a higher
value, and when a participant does not feel stressed, the model
tends to output a lower value. However, these models are not
highly accurate, as they often do not outperform a
person-specific baseline. For most participants, the association
between predictions and actual self-reported stress is positive,
but it is significantly negative (range P<.001 to P=.049) for a
very small group (5/224, 2.2%). Thus, for a very small group
of participants, the model tends to detect subjective stress when
the person does not feel stressed, and vice versa.

We then evaluated how well idiographic models recognize
momentary subjective stress in out-of-sample observations. For
all models, model predictions of momentary subjective stress
correlated positively and significantly with self-reports of
momentary subjective stress, but only in a minority of

participants. In 60 participants, this correlation was moderate
or larger (ρ>0.3), whereas the overall median correlation was
absent to weak (range of median correlations per model,
ρ=0.00-0.09). In a minority (11/224, 4.9%), model predictions
of stress and self-reported stress were significantly negatively
associated. Similar to the nomothetic models, the median
person-specific MAE for each idiographic model was slightly
>0.8 points. These MAE scores are compared with a
person-specific baseline based on the person-specific average
level of stress in the participant’s train data (ie, first 80%) rather
than all their data to prevent data leakage from train to test data.
MAE varied from individual to individual, but for 80.4%
(180/224) of participants at least one of the idiographic models
outperformed the person-specific baseline. The I-SVR most
frequently outperformed all other models (including
person-specific baseline; 92/224, 41.1%), followed by I-RF
(47/224, 20.9%) and I-LASSO (43/224, 19.2%).

Table 1. Central tendency and range of out-of-sample predictive accuracy (Spearman ρ correlation and mean absolute error [MAE]) for nomothetic
and idiographic models on a person-by-person basis.

MAESpearman ρ rank-order correlationModel

Best model (%)Better than baseline (%)Median (range)Percent significantMedian (range)

89.29N/A0.83c (0 to 3.39)N/AN/AbNa-baseline

8.9310.270.84 (0.11 to 2.04)51.340.15 (−0.45 to 0.65)N-LASSOd

1.794.910.84 (0.17 to 2.04)53.570.16 (−0.31 to 0.64)N-SVRe

03.570.84 (0.26 to 2.04)55.340.19 (−0.37 to 0.57)N-RFf

19.64N/A0.83 (0 to 3.40)N/AN/AIg-baseline

18.7534.370.87 (0 to 3.36)13.840.00 (−1 to 1)I-LASSO

41.0750.450.84 (0 to 3.49)23.210.09 (−0.79 to 1)I-SVR

20.9839.730.84 (0 to 3.27)19.640.08 (−1 to 1)I-RF

aN: nomothetic.
bN/A: not applicable.
cItalicized values represent best performance.
dLASSO: least absolute shrinkage and selection operator.
eSVR: support vector regression.
fRF: random forest.
gI: idiographic.

Identifying Digital Markers of Momentary Subjective
Stress
To demonstrate which aspects of the model have the strongest
predictive value, Figure 3 provides an overview of the 10 most
important features per nomothetic and idiographic model. In
all 6 models, temporal features, COVID-19 lockdown status,
messenger and social network use, and sleep proxies were most

important to the prediction stress. The largest disagreement
between nomothetic and idiographic models was the importance
of messenger and social network use relative to sleep duration
and onset. The former features were more important in
nomothetic models, whereas the latter were more important in
idiographic models. Feature importance was relatively consistent
for models across data splits (refer to Multimedia Appendix 3
for beeswarm plots per model per data split).
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Figure 3. Feature importance ranking for each nomothetic (N) and idiographic (I) model, containing features that appeared in the top 10 features of
any model. Numeric values represent the ranking of 1 feature for 1 model. Dark (top) cells represent more important features. N-median and I-median
represent the median ranking of a feature across N and I models, respectively, where double values indicate a tie between 2 features. Features are ordered
by N-median scores. LASSO: least absolute shrinkage and selection operator; RF: random forest; SVR: support vector regression.

Understanding Digital Markers of Momentary
Subjective Stress
Feature importance provides relevant information about which
features contribute most to predictions. However, it does not
tell us whether small or large values of a feature are indicative
of momentary subjective stress. For instance, although we have
identified hour of the day as a relatively important predictor of
momentary subjective stress, it is still unclear whether people
tend to feel more stressed in earlier or later hours of the day.
To clarify potential relations between features and momentary
subjective stress, we present a beeswarm plot for the nomothetic
RF (Figure 4; refer to Multimedia Appendix 3 for all beeswarm
plots) to visualize how different features are related to model
predictions in 1 split of the data. In this figure, for each feature
(listed on the y-axis in decreasing order of importance), a point
represents 1 test trial, the color of a point indicates the value of
the feature (red for higher values [eg, later hour of the day] and

blue for low values [eg, earlier hour of the day]), and the
position along the x-axis indicates the SHAP value (positive
values correspond with higher stress predictions; larger
magnitude values indicate stronger impact). For any 1 feature,
red points on the left side of the plot (high feature values and
negative SHAP values) indicate a relation where increasing the
feature value results in the model predicting lower outcome
values (eg, higher hour predicts lower stress), whereas red points
on the right side of the plot (high feature values and positive
SHAP values) indicate a positive relation (eg, COVID-19
lockdown predicts higher stress). For instance, Figure 4 shows
that N-RF predicts greater momentary subjective stress values
(1) in earlier hours of the day (indicated in blue), (2) during
COVID-19 lockdown, (3) on weekdays, and (4) later in the
month. Similarly, when individuals spend more time on
messenger (red), these models output greater values for
momentary subjective stress.
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Figure 4. Shapley additive explanations (SHAP) beeswarm plot indicating the relative importance of each feature and the relation between feature
values and model prediction for the nomothetic random forest model. COVID-19 is coded as 0=before lockdown and 1=during lockdown. Weekday is
coded as 0=weekday and 1=weekend.

Interindividual Differences in the Relation Between
Digital Markers and Stress
We also investigated whether the nature of relations between
features and stress differed from person to person. As the
zero-order Spearman rank-order correlations between features
and stress are relatively weak (Multimedia Appendix 4), we
instead calculated these correlations between feature values and
SHAP values for each idiographic model. A positive correlation
between feature and SHAP value indicates that when this feature
has a higher value, the model predicts that an individual feels
more stressed. SHAP values of more complex models have the
potential benefit of capturing the nonlinear and interactive
relations learned by the model. Correlations with P values of
>.05 are not included.

Figure 5 shows the frequency of significant positive and negative
correlations between digital markers and SHAP values for the

prediction of stress for each idiographic model. Interestingly,
most bars are both red and blue, which indicates a relatively
heterogeneous relation across people between that feature and
stress for most features. For instance, there is much
heterogeneity in the relation between stress and some of the
most important features (Figure 3), including social network
use and sleep duration. Some bars are mostly red or mostly blue,
suggesting a relatively homogeneous relation across people
between these features and stress. For instance, the relation
between stress and hour of the day is mostly negative and the
relation between stress and shared transportation app use is
mostly positive. A few features rarely show any correlation with
predicted stress, and this is likely because that model has learned
to disregard those features or because the correlation between
feature values and SHAP values is either not reliable or
monotonic.
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Figure 5. Stacked bar plots representing the proportion of participants showing a significant positive (blue bar) or negative (red bar) correlation between
feature values and Shapley additive explanations (SHAP) values for each idiographic model. A positive correlation indicates that when a given feature
has a higher value, then the model predicts that an individual feels more stressed. A negative correlation indicates that when a given feature has a higher
value, then the model predicts that an individual feels less stressed. For instance, the idiographic random forest (I-RF) predicts a lower level of stress
at later hours of the day in 53.4% (120/224) of individuals. I-LASSO: idiographic least absolute shrinkage and selection operator; I-SVR: idiographic
support vector regression.

Discussion

Principal Findings
The aims of our study were to explore (1) to what extent
machine learning models can leverage features of smartphone
app use log data to recognize momentary subjective stress, (2)
which smartphone app use features are most important for
predicting stress and represent potential digital markers of stress,
(3) the nature of the relations between smartphone app use
features and stress, and (4) the degree to which these relations
differ from one person to another. We found that when
individuals were more stressed, the best performing nomothetic
models tended to predict a higher level of stress (and vice versa)
in the majority of individuals (up to 124/224, 55.3%). However,
they generally did not predict stress with greater accuracy than
a naive baseline model, which always predicted that a person
was experiencing their average level of stress. We found these
results to be similar for idiographic models, although these
models predicted stress with greater accuracy than a naive
baseline model. Although performance should be improved to
make clinical application feasible, this study does suggest that,
in the absence of self-report or physiological data, digital

markers can be used to recognize momentary subjective stress
on a person-by-person basis in out-of-sample data.

Using explainable artificial intelligence, we found that temporal
features, prolonged messenger and social network app use, and
smartphone-tracked sleep proxies were the most important
features of the best-performing nomothetic and idiographic
models. These models consistently ordered these features, with
temporal features as most important and app use as less
important drivers of stress predictions. The largest disagreement
between nomothetic and idiographic models is the importance
of app use duration. In nomothetic models, these are more
important than sleep features, but in idiographic models, the
order is opposite. In sum, though, prolonged use of messenger
and social network apps and sleep proxies might be valid digital
markers of stress.

Our results suggest that, for an average person, in the earlier
hours of the day, on weekdays, on later days of the month, and
during COVID-19 lockdown (compared with before COVID-19
lockdown), individuals felt more stressed than they would
usually do. Individuals also felt more stressed when spending
more time on social apps (ie, messenger and social network
apps). The relation between temporal features and (SHAP values
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for the prediction of) stress was rather consistent across
individuals, suggesting these could represent universal principles
for this population. These may even be explained by biological
mechanisms (eg, cortisol awakening response [38]) that
universally affect adolescents and young adults. Such features
are likely important to include in passive tracking in the context
of stress-related mental health problems such as depression and
burnout.

One of the unique features of this study was to compare
nomothetic and idiographic models in light of increasingly
idiographic research practices in behavioral science [29]. Our
findings show that model personalization is warranted especially
when smartphone app use features are added to the model. That
is, the relation between social app use and stress was negative
for some individuals and positive or absent for others (Figure
5). We, therefore, find evidence that the idiographic approach
of digital phenotyping research, that is, “the moment-by-moment
quantification of the individual-level human phenotype in situ
using data from personal digital devices, in particular
smartphones” [39], is warranted in the context of stress.

In clinical practice, the added value of digital phenotyping of
stress is that it might help us to understand how, for a given
individual, stress is related to temporal features, how sleep
impacts their stress levels, and how their stress relates to their
smartphone app use. Identifying the latter relations might serve
as a probe for qualitative investigation of how they respond to
stress. For instance, if an individual spends less time on
messenger apps when stressed, this could suggest that they avoid
social contact, whereas seeking social support might be
beneficial. If individuals are not aware of this pattern,
personalized prediction models could provide novel clinical
insights and could potentially help to improve therapy outcomes
(eg, within personalized treatment modules [40]).

Finally, our exploratory findings provide important directions
for confirmatory research. Contrary to the approach taken here,
which is useful for discovering potential digital markers, a
confirmatory approach would be to test a small number of
(preregistered) hypotheses that make explicit what relation we
expect between specific digital markers and momentary
subjective stress. Confirmatory research is required to test the
robustness of (1) the relation between stress and the potential
digital markers identified here and (2) the interindividual
variability in this relation.

Limitations
This study should be viewed in light of the following limitations.
First, our findings have constraints on generality, as they are
based on a sample of students at a small university in the
Netherlands and, therefore, are more likely to generalize to
student than nonstudent populations. Furthermore, we measured
these individuals during the COVID-19 pandemic, when the
original (Wuhan) strain of the SARS-CoV-2 virus was dominant.
As results suggest that the COVID-19 pandemic and resulting
lockdown affected participant stress (generally increasing stress
but decreasing stress in some individuals), potentially, these
results might have been different had there not been a pandemic.

We encourage future research to test if our results replicate in
other populations (eg, working adults or individuals diagnosed
with mental disorders) and during a period with a limited
SARS-CoV-2 infection rate.

Second, it is conceivable that not all students self-reported stress
accurately at every assessment. A significant proportion of
variance might therefore represent noise that cannot be explained
by any variable or model, irrespective of modeling decisions.
This is especially an issue for idiographic models that rely on
the participants’ final observations, which might be observations
of lower quality because of study fatigue [41].

Third, we applied within-person mean centering to the
self-reported stress. Although this corrects for differences in
how people use a scale, it only allows nomothetic models to
predict whether a person is currently experiencing more or less
stress than usual and prevents models from predicting whether
this person’s stress level is very low or high relative to other
people’s stress level.

Fourth, we forced nomothetic models to learn one mapping
function from features to outcome for all individuals in our
sample. This is problematic because such models learn 1 set of
parameters that might be accurate for some individuals but
highly inaccurate for others (ie, one-size-fits-all fallacy) [42].
Truly idiographic models, which we also trained in this study,
do not have this issue by default. However, this comes at the
cost of strongly reduced sample size, which limits model
complexity and may lead to overfitting. As collecting more
self-report data per individual is not feasible for samples of this
size, future studies could (1) focus on smaller samples with
exceptionally motivated participants for a longer sampling
period, (2) use wearables to measure psychophysiological
signals of stress (eg, CortiWatch [43]), or (3) train machine
learning models on a full data set without losing sight of
interindividual differences in feature-outcome relations (eg,
using transfer learning [44]).

Conclusions
Our exploratory study has 3 main conclusions. First, temporal
features, sleep proxies, and prolonged use of messenger and
social network apps are consistently identified as the most
important digital markers for predicting momentary subjective
stress. Second, for most people (200/224, 89.3%), these markers
are not sufficiently informative to recognize momentary
subjective stress with appreciable improvements in accuracy
over a baseline model but do produce predictions that correlate
with subjective stress. Third, the utility and relation with stress
of (some) digital markers varies from person to person. On the
one hand, 1 digital marker may be relevant to momentary
subjective stress in one individual but not in another. On the
other hand, the increase of 1 digital marker might imply lower
stress for one individual and higher stress for another. Our study
thus provides evidence for phenotypic heterogeneity in the
relation between how we feel and the digital traces we leave
behind. These findings are relevant for the implementation of
algorithms in mobile health apps to prevent, monitor, and treat
stress-related mental health problems.
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