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Introduction: There is a rising interest in using virtual reality (VR) applications in
learning, yet different studies have reported different findings for their impact and
effectiveness. The current paper addresses this heterogeneity in the results.
Moreover, contrary to most studies, we use a VR application actually used in
industry thereby addressing ecological validity of the findings.

Methods and Results of Study1: In two studies, we explored the effects of an
industrial VR safety training application on learning. In our first study, we examined
both interactive VR and passive monitor viewing. Using univariate, comparative,
and correlational analytical approaches, the study demonstrated a significant
increase in self-efficacy and knowledge scores in interactive VR but showed
no significant differences when compared to passive monitor viewing. Unlike
passive monitor viewing, however, the VR condition showed a positive relation
between learning gains and self-efficacy.

Methods and Results of Study2: In our subsequent study, a Structural Equation
Model (SEM) demonstrated that self-efficacy and users’ simulation performance
predicted the learning gains in VR. We furthermore found that the VR hardware
experience indirectly predicted learning gains through self-efficacy and user
simulation performance factors.

Conclusion/Discussion of both studies: Conclusively, the findings of these studies
suggest the central role of self-efficacy to explain learning gains generalizes from
academicVR tasks to those in use in industry training. In addition, these results point to
VR behavioral markers that are indicative of learning.
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1 Introduction

Virtual reality (VR) has increasingly been used as a tool for training in a variety of
domains, including education (De Back et al., 2020; van Limpt-Broers et al., 2020; Schloss
et al., 2021), medicine (Yang et al., 2018; Behmadi et al., 2022), and industrial maintenance
(Pedram et al., 2020; Makransky and Klingenberg, 2022). In addition to an effort to
understand in what contexts and what aspects of VR training are more beneficial than
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other training methods (Buttussi and Chittaro, 2017; Makransky,
Borre-Gude, et al., 2019; Radianti et al., 2020), there is an increasing
focus on understanding the cognitive and affective factors that
explain the variability of learning in VR (Makransky and
Petersen, 2019).

Both immersive VR and 2D screen training methods, have the
potential to leverage multimedia learning principles to facilitate
more effective training by optimizing the integration of various
visual and auditory information (Mayer, 2009; Mayer, 2014). While
several studies point to immersive VR promoting a higher degree of
learning than 2D screen solutions (e.g., Krokos et al., 2019; Johnson-
Glenberg et al., 2021), others report no difference in learning
effectiveness between VR and non-VR conditions (Greenwald
et al., 2018; Madden et al., 2020; Souchet et al., 2022). Some
studies have even reported a lower degree of learning in VR
conditions compared to a 2D screen solution (Molina-Carmona
et al., 2018; Makransky et al., 2019).

One explanation for these mixed findings might be the complex
nature of learning, with a myriad of elements in the learning process
needing to be considered together and not in isolation (Salzman
et al., 1999). For instance, factors such as self-efficacy or perceived
user confidence (Gegenfurtner et al., 2014), the training context
(Hamilton et al., 2021), learners’ behavioral traits (Bailenson et al.,
2008; Gavish et al., 2015; Pathan et al., 2020), as well as the quality of
the interaction experience with the system (Salzman et al., 1999;
Wang et al., 2017; Rupp et al., 2019) all play an important role both
in the learning process and its outcome. And the aim of the current
study is to advance the knowledge in both VR learning outcomes
and the process of learning in VR.

Given the primary objective of understanding the complexity in VR
learning process and learning outcomes, a foundational aspect to
explore is self-efficacy. Self-efficacy, was defined by Bandura (1997)
as the perceived confidence in conducting the trained task. Self-efficacy
beliefs influence an individual’s level of motivation, their resilience in
the face of challenges, and the amount of effort they invest in a task,
according to Bandura’s social cognitive theory (Bandura, 1993).
Consequently, learners with a higher sense of self-efficacy are more
likely to persist in difficult situations, resulting in improved learning
outcomes (Pajares, 1996; Zimmerman, 2000). Self-efficacy has a central
role in many explanations of learning gains found in VR training tasks
(Wang andWu, 2008; Richardson et al., 2012; Gegenfurtner et al., 2013;
Tai et al., 2022). Most notably, Makransky and Lilleholt (2018) and
Makransky and Petersen (2019) used a wide array of cognitive and
affective measures within structural equation modeling (SEM)
frameworks—a statistical technique that combines factor analysis
and multiple regression analysis (Kline, 2015)—to explain variability
in learning gains. The conclusion in both studies was that most
measures indirectly explained a degree of learning, but the strongest
direct connection to learning was from self-efficacy measures. In their
CAMILmodel,Makransky and Petersen (2021) also, reported a positive
relationship between self-efficacy and learning outcomes. Finally, Tai
et al. (2022) presented a model in which self-efficacy explained learning
through a positive relationship withVR-learning-interest and a negative
relationship with VR-using-anxiety. In light of these findings, self-
efficacy serves as a central factor in our study as well.

In line with our objective to unravel the complexities influencing
learning in VR, it is essential to address the behavioral traits of a
learner known to be a factor that correlates with learning gains in VR

(Cheng et al., 2015). These traits refer to in-game, real-time,
objective behavioral measures of the user. Researchers often
convert these measures into performance and use them as
assessment methods embodied in the VR environment, which is
also known as stealth assessment (Shute, 2009; Alcañiz et al., 2018).
However, it is important to distinguish between behavioral data
collected during training versus testing phases in VR. This can be
seen as analogously to student classroom behavior during regular
training versus during an exam. Paying attention to a text for an
extended time during a training session, is more focused on the
learning process and can reveal personal characteristics, intrinsic
motivations and interests, which then may result in more effective
learning. In contrast, extended attention to a part of text during a
test, is directly related to the learning outcomes, which may indicate
understanding issues, and propose potentially lower learning
outcomes. In our study, we focused on training-phase data to
isolate and better understand how inherent behavioral traits
influence learning in a VR training procedure, rather than simply
measuring the end result of learning outcomes.

Various objective measures have been employed in different
studies to assess performance. For instance, Salzman et al. (1999)
used administrator observations, time on task, error types, and error
rates as indicators of actual performance to characterize their other
variables. Gavish et al. (2015) used task time, the number of picture
clues required, and the number of unsolved errors to calculate a
combined performance score. Similarly, Shi et al. (2020) applied
accuracy and operation time as indicators of task performance and
used machine learning methods to predict learning outcomes.
Inspired by these studies, we introduced the latent variable “user
simulation performance,” inferred from four objective measures we
selected, including time on task, error count, question count, and
fixation on the checklist. We believe that the combined insights from
these references suggest a correlation between user simulation
performance and learning gains. And a novel aspect of our study
is defining this variable and exploring its relationship with learning
gains and self-efficacy.

To further strengthen our understanding of the VR learning
process, we turn our focus to another known factor to influence
learning, the quality of the interaction experience with the VR
training environment (Salzman et al., 1999), which we term as
“VR hardware experience.” This is a latent variable, inferred from
usability and simulator sickness. However, the literature is not clear
about how direct is the relationship between this factor and learning
gains. Jia et al. (2014) reported that usability has a positive
correlation with learning in a memory-test, but Makransky and
Peterson (2019), in their SEM model, indicated that usability
explained learning indirectly through self-efficacy. This is similar
for simulator sickness, with some studies reporting its direct effects
on learning (Rupp et al., 2019), but others reporting no effect (Selzer
et al., 2019).

There have been few studies to date that have tried to explain
learning in VR simulations by measuring self-efficacy, user
simulation performance, and hardware experience. Several studies
have identified direct or indirect associations between usability and
self-efficacy or perceived learning (Makransky and Petersen, 2019;
Pedram et al., 2020; Song et al., 2021). Jia et al. (2014) reported a
correlation between usability and task performance, and Johnson
(2007) reported a correlation between simulator sickness scores and
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their participants’ statements that “discomfort hampers training.”
This study is the first to evaluate all three as potential factors to
explain learning gains in VR training environments.

In conclusion, studies that investigate the role of interactive VR
in learning often give insufficient consideration to the variety of
factors that attribute to the complexity of the learning process as well
as the interactions of these factors. This may explain why the
literature has yielded mixed findings on the positive, neutral, and
negative effects of VR on the outcome of the learning process.
Moreover, the influence of training context and application domain
on VR effectiveness has been demonstrated in the literature
(Madden et al., 2020; Wu et al., 2020; Johnson-Glenberg et al.,
2021), but most studies focus on research-designed simulations
rather than industry-designed training actually being used,
raising concerns about the generalizability and applicability of the
findings. The current study addresses these gaps by examining the
effectiveness of a pre-existing real-world industrial applications used
for maintenance and safety training, and by investigating the
interrelation of different factors affecting learning in this
solution. The aim of our investigation is twofold: advancing the
understanding of VR learning outcomes and exploring the
complexities of the process of learning in VR. To meet these
objectives we conducted two studies. The first study centers on
learning outcomes, asking the question whether current VR training
produces any learning gains and self-efficacy in interactive VR and
passive monitor viewing? In the second study we map out the factors
that may explain learning gains in interactive VR training scenarios
by using structural equation modeling to address the question how
the interrelation of different factors like self-efficacy, user simulation
performance, and VR hardware experience can define the learning
gain in VR. Makransky and Petersen (2019) demonstrated that two
sets of measures—self-reported affective and self-reported cognitive
measures—filtered through the measure of self-efficacy, affected
learning gains. We added additional measures to the model to
unravel the complexity of the above-mentioned factors that may
affect learning in VR simulations.

2 Study 1. Training using monitor
versus VR

A two-part study investigated the learning outcomes and self-
efficacy of an industrial VR application for training electrical
maintenance tasks. The simulation was presented either as an
interactive 3D VR simulation or a passive viewing condition on a
2D screen. Learning and self-efficacy gains were evaluated for each
condition, then compared across conditions. Finally, the
relationship between self-efficacy and learning gains was
evaluated in each condition separately.

2.1 Method

2.1.1 Participants
Sixty individuals (39 females, age M = 21.83, SD = 4.20) from

Tilburg University participant pool participated in the study for
course credits. The study received approval from the ethics
committee at the university (REDC # 20201035). While we did

not assess specific VR expertise of participants, none of the
participants was familiar with the particular industrial VR
solution. Inclusion criteria were that participants had to be
16 years of age or older, no uncorrected hearing or visual
impairments, and had to have proficiency in English—the
standard language of communication for Tilburg University
students. The exclusion criterion consisted of the inability to
complete the VR training task.

2.1.2 Materials
2.1.2.1 Interactive VR simulation

Before starting the VR simulation, participants completed a 5-
min VR experience with a simple task to get familiarized with the VR
controllers and head-mounted display. The interactive VR
simulation utilized in this study represents a real-world industrial
scenario in a factory, that aims to train participants in conducting
electrical maintenance—specifically, disconnecting a main feed
pump from the cooling tower in the control room and
subsequently performing a megger test on the
connections—while ensuring safety protocols. This VR solution,
provided by an industry partner, was a pre-existing training tool for
their field service engineers andmaintenance staff and is part of their
annual training. In the VR simulation, the task requires that
participants progress through three rooms: the introduction
room, the equipment room, and finally the maintenance
operation room. These rooms must be visited in this order, and
specific actions are required in each.

In the introduction room, participants listened to a detailed
description of the task presented by an embodied agent (Figure 1A).
After this description, participants were provided with a digital
“work-permit” consisted of an in-application text panel which could
be viewed by the user in VR as needed. This permit outlined all the
tasks that were to be conducted, along with some necessary steps
required to complete them. In the equipment room, participants
collected the personal protective equipment (PPE) (Figure 1B) as
outlined in the work-permit. Participants who did not collect all the
necessary equipment were not permitted to proceed to the
maintenance operation room. The final room is the maintenance
operation room, in which all electrical maintenance steps had to be
completed by using a set of tools present in the room (Figure 1C).

The sequence of steps needed to complete the maintenance task
could result in nine serious errors that could occur if the participant
did not correctly follow the instructions. After each serious error, the
participants experienced different stressors, such as an explosion or
an evacuation alarm (Figure 1D) and were automatically teleported
out of the maintenance operation room back into the equipment
room. These stressors were inherent to the original VR solution
provided by our industry partner, reflecting real-world industrial
training scenarios. For each serious error made, the experimenter,
who was the first author of the manuscript, verbally provided the
participant with the corresponding guideline associated with the
error and how to avoid it. To ensure uniform feedback for all
participants, both the experimenter and the verbal feedback
remained consistent across all sessions.

Following current training protocols, in which participants
could ask questions to the experimenter, a set of 25 pre-written
responses to frequently asked questions was created. These were
based on queries from earlier trial-run sessions, intended to

Frontiers in Virtual Reality frontiersin.org03

Mousavi et al. 10.3389/frvir.2023.1250823

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1250823


minimalize confusion across participants while ensuring
standardization. Before starting the experiment, participants were
informed that whenever they felt stuck, they could ask the
experimenter a question. In this case, the question was recorded,
and the most appropriate pre-written response was provided
verbally by the experimenter. The experiment continued until
either a 30-min time limitation was exceeded, or the user had
completed the task without producing a serious error.

2.1.2.2 Hardware and technologies
In the VR condition, we used an HTC Vive Pro 2 head mounted

display (HMD), up to 100° (horizontal) FOV, and 6-DOF trackers. We
used this specificHMD to be consistent with the equipment used by our
industry partner, who uses the same hardware and software for their
annual training of their employees. Moreover, currently this HMD is
one of themost prominent VRHMDs on themarket and has been used
in a variety of other studies (including Dey et al., 2019; van Limpt-
Broers et al., 2020). The application was streamed through SteamVR to
the HMD via the Windows 10 operating system.

2.1.2.3 Passive 2D monitor viewing
In the monitor condition, participants viewed a 7-min video of a

user performing a walkthrough of the interactive VR simulation
environment without committing any serious errors. Participants
completed this experiment online at home using their personal
setups, due to covid. The video was played in a full-screen mode
automatically and all controls otherwise available to the participant
(e.g., clicking, fast-forwarding, skipping, etc.) were deactivated by an
embedded JavaScript code in the Qualtrics platform.

2.1.2.4 Knowledge questionnaires and learning gains
An interactive design process involving the maintenance

training specialists produced 23 intended learning objectives for

the VR simulation. Two knowledge questions were created for each
intended learning objective and were then randomly assigned to one
of two sets. This produced two sets of 23 questions, with each set
featuring one question that covered each learning objective. Both
before and after training, participants answered a set of written
questions using Qualtrics on a desktop computer platform, with the
order of question sets being counterbalanced across participants.

Learning gains were computed based on the average-normalized
gain between pre- and post-knowledge assessments. Learning gains
were calculated as the ratio of the actual average gain (%post—%pre)
to the maximum possible average gain (100—%pre) (Hake, 1998).

2.1.2.5 Self-report measures
2.1.2.5.1 Self-efficacy. Self-efficacy is a measure of people’s
perceived confidence in their ability to perform a specific task
(Gegenfurtner et al., 2014). Following Bandura (2006) and
Luszczynska et al. (2005), we adapted six questions from the
General Self-Efficacy Scale (Schwarzer and Jerusalem, 1995). This
scale has demonstrated good internal consistency, with Cronbach’s
alpha values ranging from .76 to .90, the majority of which are in the
high .80s (Croasmun et al., 2011). Participants rated statements such
as “I can do an electrical maintenance operation” and “I feel
confident that I can do an electrical maintenance operation in a
limited time” on a 7-point Likert scale from 0 (lowest ability) to 6
(highest ability). These questions measured participants’ confidence
in their ability to successfully complete the electrical maintenance
task. Aggregate unweighted scores were computed and normalized
to 0 to 100.

2.1.2.5.2 System usability. System usability measured how
participants perceived the usability of the computer systems they
were using (Brooke, 2013). To measure system usability, we used the
10-item System Usability Scale (SUS) (Brooke, 1996), which has a

FIGURE 1
(A) Introduction Room; (B). PPE Room; (C). Operation Room; (D). Serious Error Stressor. Reproduced with permission.
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very good reliability with a global Cronbach’s alpha of .91 (Peres
et al., 2013). Sample items from the SUS include “I thought the
training system was easy to use” and “I felt very confident using the
training system.”These questions measured users’ perceptions of the
usability of the VR training system, and participants rated each
statement on a 5-point Likert scale from 0 (lowest usability) to 4
(highest usability). Aggregate unweighted SUS scores were
computed, including reverse-coding, when necessary, with a final
range of scores from 0 to 100 (Bangor et al., 2008; Bangor et al., 2009;
Sauro, 2011).

2.1.2.5.3 Simulator sickness questionnaire (SSQ). To measure
participants’ discomfort level in VR, we used the original SSQ designed
by Kennedy et al. (2003), taking into account the scoring modification
suggested by Bimberg et al. (2020). The questionnaire consists of
16 questions and a good reliability based on Cronbach’s alpha of .94
(Sevinc and Berkman, 2020). Participants rated sample items such as
‘Nausea’, ‘Headache’, and ‘Oculomotor discomfort’ on a 4-point Likert
scale from “none” to “severe.”Higher scores indicate a higher degree of
simulator sickness.We calculated the total SSQ score by aggregating the
three unweighted subscales proposed by Kennedy et al. (2003) taking
into consideration that five items repeat across the subscales. We
multiplied the sum by Kennedy et al.‘s recommended scaling factor
of 3.74, which translates to a possible score range from 0 to 235.62.

2.1.3 Design and procedure
After signing the informed consent form, participants in both

the interactive VR condition and the passive viewing 2D monitor
condition followed the same overall procedure. First, they completed
the knowledge test and self-efficacy questionnaire. Participants in
the interactive VR group received training in the electrical
maintenance task VR simulation, while those in the passive
viewing group underwent training by watching a gameplay video
of the same simulation, but on a 2D monitor. After the training,
participants in both groups completed the simulator sickness
questionnaire, followed by the post-training knowledge test, self-
efficacy questionnaire, and system usability questionnaire.

2.1.4 Statistical analyses
Several statistical methods were used to evaluate the effectiveness of

our training conditions and various related measures. All measures
recorded and reported here were analyzed in both studies.We used one-
sample t-tests to determine whether the observed changes in learning
gains and self-efficacy from pre-to post-test significantly deviated from
zero. We utilized independent t-tests to compare the VR and monitor
conditions in terms of learning gains, self-efficacy, system usability, and
simulator sickness. In addition, Pearson correlation analyses were used
to examine the relationships between learning gains and self-efficacy,
system usability, and simulator sickness in both conditions.

2.2 Results

2.2.1 Learning and self-efficacy gains
2.2.1.1 VR condition

Twenty-nine out of 30 participants showed an increase in their
knowledge scores from pre-to post-test (M = 42.10, SD = 18.9).
These learning gains were above zero, according to a one-sample

t-test, t(29) = 12.20, p < .001, d = 2.22. Moreover, the self-efficacy of
22 out of 30 participants increased (M = 12.2, SD = 18.7), and the
self-efficacy gains were significantly greater than zero t(29) = 3.58,
p < .01, d = 0.65. Detailed statistics are provided in Table 1.

2.2.1.2 Monitor condition
Twenty-five out of 30 participants showed an increase in

knowledge (M = 32.62, SD = 29.62) and a one-sample t-test
showed these knowledge gains were significantly above chance, t
(29) = 6.03, p < .001, d = 1.1. Self-efficacy also showed an increase in
17 out of 30 participants (M = 9.63, SD = 15.6). A one-sample t-test
showed a significant increase in self-efficacy after monitor training,
t(29) = 3.38, p < .01, d = 0.62. For comprehensive statistics, refer to
Table 1.

2.2.1.3 Comparison between conditions
Despite larger effect sizes for both learning and self-efficacy

gains in the VR condition compared to the monitor condition there
was not a significant difference between the VR and monitor
conditions in learning gains, t(49.19) = 1.46, p =.14, d = .38 or
self-efficacy, t(56.22) = 0.58, p = .56, d = .15. A detailed comparison
between VR and monitor conditions, considering all measures, is
presented in Table 2.

2.2.2 System usability checks
2.2.2.1 VR condition

System usability scored just below the average satisfaction rate of
68 (Brooke, 2013; Joshi et al., 2021), with the average SUS score
being 66.42 (SD = 16.73). Also, simulator sickness was
operationalized by SSQ scores (M = 29.67, SD = 26.02) in VR.

2.2.2.2 Monitor condition
For the monitor condition, the SUS scores (M = 56.75, SD =

15.45), were well below the acceptable standard (Brooke, 2013; Joshi
et al., 2021), suggesting that the participants did not experience this
system as acceptably usable. Additionally, the SSQ scores (M =
40.64, SD = 32.40), were derived from participants from watching
the video on the monitor.

2.2.2.3 Comparison between conditions
A significant difference between VR and monitor was found for

SUS, t(57.63) = −2.32, p = .02, d = .60. However, there was no
significant difference between the VR and monitor conditions in
SSQ, t(55.41) = -1.45, p = .15, d = −.37. Although, SSQ in monitor
was slightly higher than induced sickness by using VR.

2.2.3 Relationship between learning gains and
other measures
2.2.3.1 VR condition

A Pearson correlation test indicated a significant positive
correlation between learning gains and self-efficacy, r(28) = .47,
p < .01. In contrast, the correlations between learning gains and SUS,
r(28) = .29, p = .12, and between learning gains and SSQ,
r(28) = −.24, p = .2, were not statistically significant.

2.2.3.2 Monitor condition
Conversely, a correlation test showed no significant relation

between self-efficacy and learning gains, r(28) = .23, p = .22. As with
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the VR condition, there was no significant correlation between
learning gains and SUS, r(28) = .23, p = .21, nor between
learning gains and SSQ (r(28) = −.05, p = .79) in the monitor
condition.

2.3 Discussion

When either actively exploring an immersive VR simulation or
passively viewing a simulation on a monitor, the industry-designed
VR training resulted in significant improvements in both knowledge
gains and self-efficacy. These results are consistent with research-
designed 2D-VR training environments (Smith et al., 2018; Madden
et al., 2020) and interactive VR training environments, e.g., (Buttussi
and Chittaro, 2017; Smith et al., 2018; Rupp et al., 2019). Additionally,
this study found no significant difference between the two conditions
regarding SSQ, consistent with previous research by Joshi et al. (2021),
but a difference between VR and monitor was found for SUS, as also
reported by Simões et al. (2020) and Othman et al. (2022).

The high fidelity of VR compared to the monitor condition
made it rather surprising that our comparisons did not show a
reliable difference between the two conditions, except for system
usability. But perhaps this is not unexpected given the complex
nature of learning (Salzman et al., 1999), with literature suggesting
that several factors can explain this finding, such as differences in
participant perceptions of their abilities, behavioral differences, or
the quality of experience participants had.

The difference between VR and the monitor condition was
much clearer in the relationship between self-efficacy and
learning. In the monitor condition, there was no evidence of a
significant correlation between learning and other measures, but in
the VR condition, there was. The positive correlation in the VR

condition echoes the results of structural equation modeling
analyses on learning in other VR tasks (Makransky and Petersen,
2021). Makransky and Petersen (2019) found that a large range of
cognitive and affective factors that might directly influence learning
gains are more appropriate to consider as indirect factors, and the
measure with the most direct impact on learning gains is self-
efficacy. Expanding on this framework, in Study 2 we recorded
behavioral data during the immersive VR task (Salzman et al., 1999;
Gavish et al., 2015; Read and Saleem, 2017; Shi et al., 2020) and
evaluated the relationship between learning gains, self-efficacy,
system usability, simulator sickness, and behavioral measures.

3 Study 2. Training in VR

We followed Makransky and Peterson (2019) and used a
structural equation model (SEM) to map out the factors that may
influence learning in VR. The theoretical framework for this study is
grounded in the existing literature presented in the introduction
section, which suggests that self-efficacy, user simulation
performance, and VR hardware experience can all influence
learning outcomes in a VR training environment either directly or
indirectly through self-efficacy. The hypothesized model in Figure 2
encompasses all these factors and the postulated relationships between
them, in accordance with the theoretical framework.

As in the Makransky and Peterson (2019) analysis, there is
hypothesized a connection from Self-Efficacy Gain to Learning
Gains. This is in alignment with existing work showing self-
efficacy has been found to have a significant influence on
learning gains in VR (Wang and Wu, 2008; Richardson et al.,
2012; Gegenfurtner et al., 2013; Makransky and Petersen, 2019;
Tai et al., 2022). However, Figure 2 indicates the inclusion of
connections from the User Simulation Performance and VR
Hardware Experience latent factors to both the Self-Efficacy Gain
and Learning Gains factors. Previous studies have shown that VR
hardware experience, which encompasses the user’s interaction
experience with the VR training environment, can explain
learning outcomes (Salzman et al., 1999; Makransky and
Petersen, 2019; Rupp et al., 2019; Selzer et al., 2019). However,
usability and simulator sickness, components of VR hardware
experience, have been found to have an ambiguous effect on
learning (Jia et al., 2014; Makransky and Petersen, 2019). We
expect that VR hardware experience may explain the learning
gains and predict self-efficacy gains. Finally, we include a
connection from VR Hardware Experience to User Simulation

TABLE 1 One-sample t-test and descriptive stats for learning and self-efficacy across conditions.

Measures Pre-test Post-test Learning gains Statistics

M SD M SD M SD t(29)

Learning in VR 10.14 2.38 15.56 2.71 42.10 18.90 12.20***

Learning in Monitor 9.96 2.42 14.30 3.74 32.62 29.62 6.03***

Self-efficacy in VR 38.42 19.03 50.64 21.59 12.22 18.67 3.58**

Self-efficacy in Monitor 29.90 13.98 39.53 19.07 9.63 15.60 3.38**

Note. Gains for learning are average-normalized gains (controlled for pre) for each participant, and for the self-efficacy is the actual average gain. **p < .01, ***p < .001.

TABLE 2 Independent t-test and descriptive stats for comparing all measures
across conditions.

Measures VR Monitor Statistics

M SD M SD t(df) df

Learning Gains 42.10 18.90 32.62 29.62 1.46 49.19

Self-efficacy Gains 12.20 18.70 9.63 15.60 .58 56.22

System Usability Scale 66.42 16.73 56.75 15.45 −2.32* 57.63

Simulator Sickness 29.67 26.02 40.64 32.40 −1.45 55.41

Note. *p < .05.
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Performance as we expect VR hardware experience can explain user
simulation performance (Johnson, 2007; Jia et al., 2014).

3.1 Method

3.1.1 Participants
To ensure sufficient statistical power for the SEM analysis, an

additional 27 participants were recruited from the same participant pool.
The original goal was to double the number of participants from the VR
condition in Study 1 by recruiting 30 more. Three participants however
had to be excluded due to their inability to complete the task. As a result,
a total of 57 participants (30 from Study 1 and 27 new ones) were
included in the SEM analysis (29 females, age M = 21.98, SD = 4.20).

Similar to Study 1, participants had no prior familiarity with our
specific VR solution. The inclusion criteria was age 16 or older, no
uncorrected hearing or visual impairments, and proficiency in
English. The main exclusion criterion was the inability to
complete the VR training task.

3.1.2 Materials
In Study 2, we focused exclusively on VR without any

comparison to a monitor condition or anything else. This choice
was informed by the results of Study 1, where the VR condition
demonstrated a significant correlation between learning gains and
other measures. Study 2 used the same materials and methods as
Study 1, with the addition of the following behavioral measures.

3.1.2.1 Behavioral measures
3.1.2.1.1 Time on task. The duration of the task ranged from
0 to 30 min.

3.1.2.1.2 Question count. The number of questions
participants asked the experimenter during the training. As

before, all questions were answered with one of the 25 pre-
determined FAQ responses.

3.1.2.1.3 Error count. The number of serious errors experienced
during the training. This ranged from 0 to 9 errors which can occur
if the user has not followed the instructions correctly.

3.1.2.1.4 Fixation on checklist. The percentage of time spent
looking at the work-permit relative to the total time the user
activated the work-permit (with a button press).

Descriptive statistics for these behavioral measures are provided
in Table 3.

3.1.3 SEM statistical analyses
The list of all measures included in the SEM analysis and their

correlation with each other is included in Table 4. The items were
treated as scalar variables, and the proposedmodels are verified in terms
of the suitability of the models using three indicators: Comparative Fit
Index (CFI, Hatcher and O’Rourke, 2013), Discrepancy Divided by
Degrees of Freedom (CMIN/DF, Hair et al., 2010), and Root Mean
Square Error of Approximation (RMSEA, Hair et al., 2010). In this
study, we performed SEM using IBM SPSS Amos version 28.0, and we
followed the SEM method from Makransky and Petersen (2019) for
pruning the non-significant paths according to the greatest misfit. After
fitting, if a non-significant connection was present, the connection with
the lowest significance was deleted and the model connections
estimated again. This procedure was iteratively followed until all of
the remaining paths were significant.

3.2 Results

We conducted a confirmatory factor analysis (CFA) on defined
constructs to test the fitness of the hypothesized relationships shown

FIGURE 2
Priori SEMmodel of the learning process in VR. This initial model represents the hypothesized relationships based on theoretical underpinnings and
previous research. Each path and node showcases our expected connections before data collection. This model serves as a foundation to compare
against the final model (Figure 3) after the iterative fitting procedure.
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in Figure 2. Our initial hypothesized model almost reached an
acceptable fit (RMSEA = .079, CFI = .94, CMIN/DF = 1.35) but
the resulting fit indicated two insignificant paths were present. After
the iterative procedure removed these two connections, a simplified

and more robust model was obtained (Figure 3) with an acceptable
fit (RMSEA = .078; CFI = .93; CMIN/DF = 1.34). All standardized
path coefficients shown in Figure 3 are significant at an alpha level of
.05. Table 4 indicates the descriptive statistics of all factor loadings.

TABLE 3 Descriptive stats of behavioral measures.

Behavioral measure Unit Min Max Average Median SD

Time on Task Seconds 635 1800 1064 1018 261.56

Question Count Number 2 17 7.05 7.00 3.28

Error count Number 1 7 3.39 3.00 1.176

Fixation on Checklist % of time fixated 0.00 100.00 23.94 21.34 18.063

TABLE 4 Correlations of all items in the hypothesized SEM.

Observed variable 1 2 3 4 5 6 7 8

Learning gain (1) 1.00

Self efficacy (2) .37** 1.00

SUS (3) .29* .34* 1.00

SSQ (4) −.21 −.15 −.56** 1.00

Time on task (5) −.29* −.20 −.19 .36** 1.00

Question Count (6) −.32* −.33* −.46** .41** .59** 1.00

Error Count (7) −.17 −.04 −.01 .05 .36** .08 1.00

Fixation on checklist (8) −.20 −.08 −.05 −.05 −.23 −.24 −.29* 1.00

Note. **p < .01 level (2-tailed), *p < .05 (2-tailed).

FIGURE 3
Final model. The dashed line represents a connection that was not significant andwas eventually pruned in the iterative fitting procedure (Makransky
and Petersen, 2019). The continuous line represents significant paths that remain from the initial hypothesized model (Figure 2).
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3.3 Discussion

In Study 2, the resulting model exhibited consistent constructs,
with “user simulation performance” representing in-game
behavioral performance measures and “VR hardware experience”
encompassing self-reported usability and sickness. These latent
factors had significant loadings on all observed measures
hypothesized to be connected to them. A strong, direct
connection was found between self-efficacy and learning gains.
This is consistent with other studies evaluating VR training in
the domains of education, academic assessments, and
occupational skill development (Richardson et al., 2012;
Makransky and Petersen, 2019; Tai et al., 2022).

The hypothesized direct connection from VR hardware
experience to learning gains was not significant in the final SEM
(beta = .137, p = .33). This finding is somewhat surprising,
considering the results reporting the direct effect of usability or
simulator sickness on learning in Jia et al. (2014) and Rupp et al.
(2019), however Salzman et al. (1999), noted mixed results in the
literature regarding usability and simulator sickness impacts on
learning. Instead of a direct connection to the learning gains, our
model suggests a positive indirect effect of the VR hardware
experience on learning by affecting self-efficacy, in line with the
findings in Makransky and Petersen (2019), where usability
connects to the learning passing through cognitive variables and
self-efficacy, and Pedram et al. (2020), where they showed both
usability and self-efficacy can explain learning indirectly through
different paths. The direct connection from usability to self-efficacy
is consistent with Song et al. (2021).

Finally, our model sheds light on the effect of user simulation
performance on learning gains. Unlike Makransky and Petersen
(2019), who did not include behavioral measures, we
incorporated them and identified a factor beyond self-efficacy
that directly impacts learning gains. Behavioral measures
recorded during training, including time on task, error count,
question count, and fixation duration, constitute a latent variable
that directly explains a significant proportion of the variance in
learning gains. A portion of the variance in user simulation
performance does seem to be directly explained by VR
hardware experience, which is in line with Jia et al. (2014),
who reported the correlation between usability and task
performance, and Johnson (2007), who reported a correlation
between SSQ score and agreement with the statement that
“discomfort hampers training.”

4 General discussion

Our finding in Study 1 regarding the parity of the effect of a
2D screen and interactive VR on learning outcomes is in line with
several studies (Buttussi and Chittaro, 2017; Greenwald et al.,
2018; Joshi et al., 2021) but in contrast with others (Krokos et al.,
2019; Kyrlitsias et al., 2020). To explain this parity and the
existing discrepancy in the literature, factors such as training
context and task-technology fit might be helpful. VR has been
shown to perform better in assessments involving spatial
memorization (Sowndararajan et al., 2008; Ragan et al., 2010),
or spatial ability (Yang et al., 2018), as well as in studies focused

on skill-based rather than knowledge-based training
(Kozhevnikov et al., 2013). Thus, the immersion and
interactivity which make VR effective for spatial and skill-
based tasks, may make it less efficient for purely knowledge-
based learning, where traditional methods can be more direct and
less distracting.

The generalization of multimedia learning principles (Mayer,
2009; 2014; Mayer and Fiorella, 2014) to VR may explain cases
where extraneous materials and features in VR environments can
cause cognitive overload, depleting learners’ limited cognitive
capacity (Parong and Mayer, 2018). A goal-oriented design with
an appropriate task-technology fit can mitigate these distractions
(Zhang et al., 2017). Considering the training context and task-
technology fit, in our study we used a safety training application
primarily designed for interactive VR. Thus, the observed parity
between 2D screens and interactive VR is more likely due to the
focus on knowledge-based rather than skill-based training contexts
and assessments.

The findings of Study 1 suggest VR should not to be seen as a
one-size-fits-all approach. This conclusion is in line with Johnson-
Glenberg et al.’s (2021) argument that “platform is not destiny”,
which suggests that only using new platforms like VR will not
guarantee the effectiveness of the training. Instead, as the current
study has shown, research into VR for training purposes should
consider a variety of factors working together, such as context, self-
efficacy, user simulation performance, and VR hardware
experience.

The results of our SEM analysis in Study 2 indicate that self-
efficacy is a central predictor of learning gains. The resulting beta
value of .3 from the SEM in Study 2, along with the correlation of
.47 in Study 1, are consistent with previous findings. For instance,
Makransky and Petersen (2019) found a beta value of .579 for the
same relationship in their SEM analysis. Likewise, Gegenfurtner
et al. (2013) in their meta-analysis reported an uncorrected mean
correlation of .34 between self-efficacy and transfer of learning.
Richardson et al. (2012) also observed a medium correlation of
.31 between GPA and academic self-efficacy, with a 95% confidence
interval of [0.28, 0.34].

Though previous SEM analyses of learning gains on VR
training found self-efficacy to be the only factor directly
predicting learning gains (Makransky and Petersen, 2019), our
analysis suggests a direct connection from the latent factor User
Simulation Performance that captures the four behavioral markers
of performance in the simulation. This suggests that behavior
provides information about the degree of learning above and
beyond what people are aware that they are capable of (self-
efficacy). In addition, it demonstrates that people who display
“correct” behavior in the VR experience (completing the task
faster, with fewer errors, while asking fewer questions, but
looking at the information sheet more) improve more based on
the training. This result suggests future avenues of adaptive
training that focus more on scaffolding the environment to
facilitate correct behavior and thus more learning (Vygotsky,
1978) and less on finding the level of desirable difficulty to
promote errors (Bjork, 1994).

The quality of the VR hardware experience, as indicated by
factors such as simulator sickness and perceived usability, did now
show a direct connection with learning gains. Instead, the VR
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hardware experience directly impacted both self-efficacy and user
simulation performance, and thus indirectly had an impact on
learning. Unsurprisingly, people who had a more negative
experience had both lower self-efficacy and worse performance,
leading to less learning. This highlights the importance of usability
when designing virtual training environments (Pedram et al., 2020)
or task-technology fit (Zhang et al., 2017).

These results focus on short-term knowledge gains from a VR
simulation designed as part of an annual refresher training program
for employees. However, insights in the duration of knowledge
retention, its generalizability and transfer to the other situations,
and the effect of participant expertise (Chi et al., 2014) require
further research.

The current study used an industry VR application with
university students as participants. One may argue that this is a
limitation of the study, as ideally employees involved in the annual
training would serve as better participants. There are two reasons for
our decision, one theoretical and one practical. In order to compare
the findings of our studies with those in other published studies, it
would be desirable to not vary both VR application and participant
group. With most of the published studies using university
participants, we opted to keep this factor constant. These
findings would then pave the way for more in-depth studies.
This brings us to the practical reason: For obvious reasons it is
harder to have employees participate in an experiment, and only ask
them to participate once a foundation is put in place of the findings
of a prior study.

Our future research will involve actual employees. In fact,
currently we are conducting a follow-up study that focuses on
employees, allowing us to compare the findings with those from
university students. Other lines of further research will focus on
gaining more insight in the dependent variables, by including
physiological measures such as EEG and eye-tracking in addition
to questionnaires, in order to compare the results from offline
measures with online measures.

In conclusion, our study shows that an industrial safety
training simulation produces significant gains in knowledge
and self-efficacy, in both VR and monitor viewing conditions.
In addition, further analysis of the VR data replicated the finding
that self-efficacy is the best predictor of learning, something that
had not yet been shown in a real-world application designed and
used by the industry. Apart from generalizing the importance of
self-efficacy for learning to industrial applications, our findings
provide evidence that people whose behavior in the simulation is
congruent with doing the task well (asking fewer questions,
making fewer errors, completing faster) learn more, and that
this effect is in addition to what can be explained by self-efficacy.
This novel result highlights the potential for behavioral markers
to indicate learning in VR settings. Our study adds to the
growing body of literature on the use of VR for industrial
training and has practical implications for the design of VR
training programs.
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