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Outline

1. What are the components of the Data Science analysis pipeline?
2. What questions do Data Science analyses try to answer?

• How are they different than inferential statistics or network analyses?
• ASIDE: The uniqueness of ESM data

3. An example DS analysis: predicting stress in adolescents
• Aalbers, et al., (in press, JMIR)
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What is the Data Science pipeline?
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What is the Data Science pipeline?
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What Q’s do Data Science analyses answer?



Consider an example: Linear Regression

What would a standard inferential statistical analysis tell us?

Model 1:  y ~ X

Model 2:  y ~ X + Z

anova(model_1, model_2)

Q: Is Z a significant predictor of y? 
Q: Is there a sig. difference in y due to Z?

Follow-ups:
• Evaluate R2 values
• Interpret beta weights



Consider an example: Linear Regression

What would a standard network analysis tell us?

For  each y in X:

Q: What is the relationship between X values over time? 
Follow-ups:
• Interpret beta weights (as partial correlations)
• Build nice networks that differentiate between sources of variance

Model:  yt ~ Xt-1

Form matrix of beta weights as connections of measures from t-1 to t



Consider an example: Linear Regression

What would a standard data science analysis tell us?

Randomly split the data into a training set (70%) and test set (30%)

Model:  ytrain ~ Xtrain

Accuracy = SSE(ytest, Model(Xtest))

Q: How well can we predict y using X? Follow-ups:
• Evaluate R2 values
• Feature importance
• Error analysis



What Q’s do Data Science analyses answer?

“How well can we predict y using X?”

IS: “Is Z a significant predictor of y?”

NA: “What is the relationship between X values over time? “



ASIDE: what is the ’correct’ test set for ESM?
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An Example: Digital Biomarkers of Stress



Digital Biomarkers of Stress: data structure

Person 1

Person 2

time



Q: How accurately can we predict momentary 
stress based on phone usage?
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Engineering Features

Person 1

Person 2

time

Feature 
Engineering

Phone Use features: 
duration and frequency 
of 18 categories of apps

Time of Day features: 
hour of day, day of 
month, weekend, 
lockdown phase

Sleep features: 
duration and onset 

(estimated based on 
phone activity) 
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Model:  ytrain ~ Xtrain

Lasso Regression
• Linear model
• Pressure to set many 

beta = 0
• Error based on RMSE

Random Forest
• Non-linear model
• Based on decision trees
• Train many trees, average 

the predictions (forest)
• Error based on R2

Support Vector
• Linear model
• Non-linear transformation 

of the input features 
• Error not RMSE based



Our Data Science pipeline
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Ideographic Models

80%, 20%

Nomothetic Models

5 folds of 45 people

Q: Can we predict this person in the future? Q: Can we predict for a new person?

ABS(ytest, Model(Xtest))
Spearman rho(ytest, Model(Xtest))



Results
Ideographic (predicting future stress for a person)
• Correlation metric:

• Random Forest: median rho = 0.10, 20.5% people rho significantly > 0

• Absolute error metric:
• Support Vector: median error = 0.85, best model for 38% of people

Nomothetic (predicting for new, unseen people)
• Correlation metric:

• Random Forest: median rho = 0.18, 55.8% people rho significantly > 0

• Absolute error metric:
• Baseline model: median error = 0.83, best model for 89% of people



Results: Individual Differences
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Where to next?

• Phone application data alone can be limited in utility and scope
• Combinations of data streams (ESM, phone, sensors) can provide a more rich 

digital footprint

• New research group in CSAI: AI & Data Science for Health & Well-being
• Expertise in Sequential Pattern Mining and Machine Learning / Deep Learning



Thanks!
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