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Abstract 

The goal of this research was to determine if clustering mobile phone data can be used to 

segment users into groups based on their behavior. Previous studies have attempted to profile 

users according to mobile phone behavior, but they pre-determined the qualities of the 

profiles manually as opposed to clustering. Studies that did utilize clustering for mobile 

phone analysis primarily focused on predicting the next app users would open. This research 

uses logging data from the MobileDNA app from Ghent University to create standard phone 

behavior features, as well as new ones that quantify notification response time. Principal 

component analysis was conducted on the feature set before clustering using DBSCAN. The 

clustering results assigned most users into one main clusters, which suggests that clustering 

may not be the most appropriate method for user profiling and that users are better considered 

with regard to a spectrum of behavior. Additionally, it found notification response time is an 

important feature in differentiating users and should be included in future studies. 

Keywords: mobile phone use, behavior profiles, principal component analysis, 

clustering, DBSCAN 
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Introduction 

Much work into mobile phone usage behavior has focused on descriptive analysis or 

app prediction (Cao & Lin, 2017; Falaki et al., 2010). As more data became available and the 

use of phones began to grow, more research focused on profiling users based on their mobile 

phone behavior by determining correlations among features or relative to labelled user data. 

This research aims to determine whether clustering can be used to automatically profile users 

based on their mobile phone behavior in order to make profiling easier and more robust. It 

will use feature engineering in this process, and in doing so, provide insights into behaviors 

of mobile phone usage. 

Descriptive research has summarized the basic characterizations of mobile phone 

usage, such as how often and for how long people engage with their phones (Do & Gatica-

Perez, 2010; Van Canneyt, Bron, Haines, & Lalmas, 2017). Such research has also provided 

information about context, such as the times and places people engage with their phone and 

how it affects their behavior. However, as mobile phone usage has grown, researchers have 

tried to gain deeper insights, often by viewing users in terms of types or groups of people, 

based on the behaviors outlined by the descriptive research. Such profiling is usually 

achieved by manually setting the boundaries that determine what is and is not important to 

segment user behavior (Zhao et al., 2017). Profiling has also been incorporated into research 

that tries to associate particular usage behaviors with supplementary labelled data, usually 

acquired through surveys (de Montjoye, Quoidbach, Robic, & Pentland, 2013). However, 

such labelled data can be expensive or time consuming to acquire and subsequently is not 

always available. 

There are also many cases of research in the social sciences that focus on 

understanding mobile phone behavior in terms of user groups, but do not yet use clustering to 

identify them. For instance, a significant amount of research has analyzed the negative 
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consequences mobile phones have on users and how behaviors may cause or be indicative of 

problematic or addictive behavior (Bianchi & Phillips, 2005; Lanaj, Johnson, & Barnes, 

2012; Twenge, Joiner, Rogers, & Martin, 2018). Having profiles that can group similar users 

together without labelled or survey data can augment this research to identify profiles of 

similar users. For example, if features are created to identify problem behaviors, such as late-

night usage, then profiles that strongly share indicative features can be used to find at risk 

users. 

Therefore, this thesis aims answer the research question: Can clustering be applied to 

mobile phone data in order to identify groups of users based on behavior? In evaluating that 

research question, it also aims to answer the following sub-questions: What features can be 

used to describe mobile phone behavior and what do they tell us about users? What does 

reducing the dimensions of the features tell us about them and how does it affect the 

clustering outcomes? Is DBSCAN an appropriate clustering algorithm to cluster users and 

determine if clustering is appropriate? In order to answer these questions, custom features 

were engineered, the dimensionality  of the feature space was reduced using principal 

component analysis (PCA), and the data was clustered using the algorithm DBSCAN (Ester, 

Kriegel, Sander, & Xu, 1996). Additionally, K-means clustering was applied to provide 

context for the results of DBSCAN. The results produced one large cluster comprised of most 

users and another smaller cluster, and assigned the remaining users (1.1%) as noise. Such an 

outcome indicates that clustering may not be the best way to understand types of users based 

on their behavior, and instead, the data indicates that user behavior lies on a continuous 

spectrum of usage. 

Related Work 

As mobile logging data became available, much research aimed to quantify the basic 

descriptive statistics of how people use their phones (Böhmer, Hecht, Schöning, Krüger, & 
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Bauer, 2011; Van Canneyt et al., 2017). As far back as 2010, research was available on how 

users were engaging with their smartphones, and it showed that, despite some similarities 

among users, different sets of people had different patterns of behavior (Falaki et al., 2010). 

Early research also determined that rich insights into mobile phone usage itself would be 

derived from the apps that users engaged with (Q. Xu et al., 2011).  

Subsequently, other studies utilized the insights to create features that served as input 

to further analysis techniques. In one such study, Liao, Li, Peng, Yu, and Liu (2013) used a 

combination of current phone behavior and sensor information to create custom features per 

person. However, the purpose of the study was to predict which app will be used next, for 

which they utilized a kNN classifier. In another study, Do and Gatica-Perez (2010) looked at 

a combination of time of day and apps used to predict the most likely user based on the 

behavioral data. They created a type of profiling for this purpose, but the method involved 

Topic Models, not clustering. The study also had some limitations; it only analyzed a select 

group of app types, but the types of apps and tasks on mobile phones have evolved 

significantly since. An additional limitation was that it used a “bag of apps” model, ignoring 

the sequence of apps, which have been shown to have a significant effect on usage behavior 

(Yan, Chu, Ganesan, Kansal, & Liu, 2012). 

There are a myriad of studies that have incorporated the sequential nature of phone 

app usage, i.e. app sequences (Cao & Lin, 2017). Many of these use Markov models for next 

app prediction, with the goal of optimizing phone usage (Liao et al., 2013; Yan et al., 2012) 

or creating recommendation systems (Gouin-Vallerand & Mezghani, 2014). One particular 

study clustered users, but solely analyzed app transitions as input to a K-means clustering 

algorithm, and like other studies, the purpose was to predict the next app (Natarajan, Shin, & 

Dhillon, 2013). 
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However, the goal of this research is to use those features to determine if they can be 

used to create clusters of users, which as of yet, has been done in a limited capacity. Some 

previous studies have focused on profiling users, but many relied on labelled data, such as in 

a handful of studies conducted that linked personality to mobile phone usage (Cao & Lin, 

2017). One such study matched phone behavior based on features from usage logs to the Big-

Five personality traits (Chittaranjan, Blom, & Gatica-Perez, 2013). It conducted a correlation 

analysis of traits to features and then applied a classification to identify the personalities of 

users. de Montjoye et al. (2013) also used mobile phone usage behavior to classify 

personality traits. However, the continuous-valued features were segmented into discrete 

buckets before profiling using SVM classification, whereas a clustering solution could take 

continuous features as input and segment automatically. Another study linked phone usage to 

socio-economic information and used multiple correspondence analysis with labelled data to 

find correlations between phone usage and socio-demographic information and lifestyle 

(Rivron et al., 2016). All of these studies aimed to group similar users based on their 

behavior; however, they also relied on labelled data, which can be expensive or inaccurate, if 

it is available at all. Another limitation was they utilized or required discrete, pre-bucketed 

data to create these profiles, predisposing the outcome to particular profile types instead of 

letting the data determine the boundaries. 

In addition to profiling based on supervised learning, some unsupervised profiling has 

been also been conducted. In work by Zhao et al. (2017), a set of eight features were created, 

based on three characteristics of behavior: daily mobility, user daily schedule, and social 

ability. Each feature then produced two labels that could be attributed to the various users, 

producing a “portrait,” or the set of labels belonging to each user (and the strength of that 

label). These portraits could be viewed as pseudo-clusters, or alternatively the feature vectors 

could be used in a clustering to group similar individuals together. However, the study did 
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not go so far as clustering. Additionally, the feature descriptions were segmented into high 

and low and excluded users who were in the “middle” range of a behavior, which may be an 

important quality depending on the feature or user group. 

Much of this work has used similar features when analyzing mobile phone behavior, 

and therefore, this thesis will also include variations of those features, as well as develop new 

ones for previously unaddressed behaviors. The first commonly used feature is between-

session duration, which was used in descriptive (Falaki et al., 2010) and profile-oriented 

studies (de Montjoye et al., 2013), where a session is generally regarded as continuous, active 

phone use. Many studies also included the number of apps used, and found the distribution 

had a long tail, where the majority of sessions are short and contain only one app (Böhmer et 

al., 2011; Falaki et al., 2010). Therefore, two features created for this study were single app 

sessions and multi-app sessions, where the latter grouped those long-tailed sessions into one 

category. The importance of app sequences – alternatively named app “trains” and defined as 

apps used in a row during a one phone interaction – has been mentioned above, and many 

studies have quantified them using the transition probabilities (Gouin-Vallerand & Mezghani, 

2014; Liao et al., 2013; Natarajan et al., 2013). However, the goal of this research is to 

differentiate users, not predict the next app, so a more simplistic approach to app sequences 

has been applied, namely, aggregating the apps in a row into a “train” that could be compared 

among users and for a particular user.1 Another study that analyzed app trains also found 

relevance in the number of unique apps used per session and the importance of 

communication to phone usage overall and in determining app trains (Böhmer et al., 2011). 

These behaviors were quantified in this study as sessions that include repeat app uses and 

sessions that include repeat instances of WhatsApp, a popular communication app. Using 

these features that address concepts from previous studies supports the generalizability of the 

                                                           
1 More details about the implementation can be found in the Experimental Setup section. 
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method, but including new features can provide additional insights into mobile phone 

behavior. 

Specifically, the new set of features are those relating to notifications and user 

response time. Except for one study which looked at the response rate to calls and texts (de 

Montjoye et al., 2013), studies that have quantified phone behavior or profiled users have 

largely left notification responsiveness unaddressed. However, other literature has 

highlighted the overall importance of notifications, by relating it to psychological traits and 

effects (Mehrotra, Pejovic, Vermeulen, Hendley, & Musolesi, 2016), linking it to problematic 

phone behavior (Elhai, Dvorak, Levine, & Hall, 2017), or trying to optimize the delivery of 

notifications (Fischer, Greenhalgh, & Benford, 2011; Mehrotra, Hendley, & Musolesi, 2016). 

Therefore, a set of features that quantifies the response time to notifications has been 

included in this research to provide new insights into general response behaviors and to 

determine the importance of response time by placing it in context with other more 

commonly analyzed phone behaviors. 

 This study then aims to determine if such features can be clustered in order segment 

users into distinct user profiles, as much of the previous research has attempted. As with 

many of the previous studies, this research will use mobile phone logging data – in this case, 

tracked using the MobileDNA app from Ghent University – for the feature engineering, 

followed by principal component analysis to reduce the dimensionality of those features. 

Finally, the reduced feature-set will be clustered using DBSCAN. Two advantages of 

DBSCAN over other clustering algorithms is that it can account for noise in the data and can 

cluster arbitrary shapes (Halkidi, Batistakis, & Vazirgiannis, 2001). DBSCAN has also been 

used in other instances of mobile phone clustering, but for purposes such as location tracking 

(Timašjov & Hadachi, 2014) or clustering users to make app predictions (Y. Xu et al., 2013).  

Therefore, this study builds on the work of other studies, but unlike those that either group 
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users based discrete features, or cluster activity for the purposes of app prediction, this study 

will use clustering to determine whether users can automatically be segmented into distinct 

user profiles. Such profiling can be used for more in-depth understanding of types of mobile 

users or for identifying specific groups of users. In the latter case, such groups can be used to 

help further research identify problematic users or identify shared behaviors between known 

and unknown users. 

Methods 

The clustering analysis outlined in this research was comprised of four main steps. 

First, the mobile phone data was preprocessed in order to remove irrelevant data and to 

reflect the most interesting user behavior, as defined by the features. The second step was to 

create those features, which were continuous values and aggregated per user. The third step 

was applying principal component analysis to the feature set. This research used a total of 30 

feature columns, so it was important to reduce the dimensionality of the data. The final step, 

clustering, included the implementation of DBSCAN and the evaluation, using a combination 

of metrics that quantify the cluster cohesion and separation. The evaluation also included 

applying K-means clustering in order to provide context for the results of DBSCAN and help 

support (or refute) its use as an appropriate clustering algorithm for this purpose. 

The first step, preprocessing the data, was necessary in order to remove data that was 

irrelevant to the research or to create columns to be used in the feature engineering. More 

details regarding the preprocessing logic are outlined in the next section. After preprocessing, 

the features were created to reflect important aspects of mobile phone usage. 

The features reflect aspects of phone behavior that have been commonly used in user 

profiling and analysis, such as apps in sequence, between-session duration, repetition of apps, 

and number of apps per session, and adapted to fit the needs of this particular research. 

Additionally, features were developed regarding notification response time that have been 
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previously unaddressed in such studies. The features were quantified as continuous values, 

without discretizing into buckets, which allows the clustering solution to determine the 

boundaries that separate a group of users. Utilizing continuous values allows for the 

application of principal component analysis (PCA), as opposed to other categorical-based 

factor analysis, and subsequent clustering. 

Principal component analysis was used to reduce the feature space to features that 

most contribute to the variability among users. To choose the number of components, the 

percent of variability captured by the components was evaluated. The goal was to reduce the 

feature space while preserving a significant amount of variance in the data, which is what 

provides the differentiating information about users. In this case, almost all of the 

components were required to account for most of the variability, so the clustering solution 

was implemented and evaluated on additional sets of fewer principal components to 

determine which would produce the optimal solution. 

The clustering algorithm used was DBSCAN, a density-based clustering algorithm 

that does not require a pre-determined number of clusters. Because it evaluates the size and 

distance of a neighborhood of points when creating a cluster, it can create clusters of various 

sizes and shapes. Additionally, DBSCAN can account for noise, which is useful, especially 

for data that may contain a significant number of outliers. DBSCAN has been used in other 

mobile analysis (Mehrotra, Hendley, et al., 2016) and found to have some of the best results 

when evaluating the quality of clusters (Timašjov & Hadachi, 2014). DBSCAN requires two 

hyperparameters, namely epsilon (ε), to determine the minimum distance between points, and 

minpts, the minimum number of points in a neighborhood required to define a cluster. The 

distance function used is the default Euclidean distance. Previous research has found that the 

optimal minpts value should be twice the number of dimensions, or higher if there is a 

significant amount of noise (Sander, Ester, Kriegel, & Xu, 1998). The ideal value of epsilon 
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is dependent on the minpts value, and can be found by plotting the kNN-distance graph, 

which plots the distances between every point and its k-nearest neighbor ordered by distance, 

where k is one less than minpts (Ester et al., 1996). The ideal epsilon is then the distance at 

which the change in density is most significant, the “elbow” value of the graph. However, 

these are heuristics and additional parameters were included in order to provide more context 

and additional results. After the set of hyperparameters was determined, a grid search was 

completed using all combinations of the values and the evaluation metrics were compared 

among the results.  

Finally, the clustering solutions were evaluated using the metrics of number of 

clusters, amount of noise, within cluster sum of squared errors (SSE), the average within 

cluster distance, average between cluster distance, silhouette coefficient, and a modified 

version of the Dunn index. These metrics evaluate the clustering solution’s cohesion – how 

compact a cluster is and how likely a point is to belong to that cluster – and separation, how 

distinct and separate the clusters are from each other. The cohesion was assessed using the 

within cluster sum of squared errors (SSE) and the average within cluster distance, where 

lower values of each indicate more cohesive clusters. Although SSE has drawbacks when 

evaluating for arbitrary-shaped clusters, such as those created by DBSCAN, it provides a 

metric for comparison, especially when used in combination with the average within cluster 

distance. The clustering separation was assessed using the average between cluster distance, 

where high values indicate better separated clusters. The silhouette coefficient and the Dunn 

index take into account both cohesion and separation (Legány, Juhász, & Babos, 2006; Tan, 

Steinbach, & Kumar, 2005). A silhouette coefficient of one indicates an ideal clustering 

(highly compact and highly separated data) and a negative value suggests incorrect clustering 

(Tan et al., 2005). For the Dunn index, the variation used the “minimum average dissimilarity 

between two clusters” and “the maximum average within cluster dissimilarity” and higher 
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values reflect bettering clustering (Hennig, 2018; Legány et al., 2006). These metrics were 

evaluated in concert with one another to choose the best solution(s) at each stage in the 

analysis. 

The cluster evaluation was completed at three points in the analysis: determination of 

which principal components to use, choosing the best hyperparameters from the grid search, 

and evaluation of the final clustering results. First, to determine which set of principal 

components to use, the number of clusters was considered foremost – only solutions with at 

least two clusters were considered successful. Second, the amount of noise needed to account 

for less than 50% of users. Then, the remaining evaluation metrics were assessed to 

determine which set of principal components provided the best solutions overall. Then, 

metrics were used to evaluate which combination of hyperparameters produced the best 

solution. Again, solutions that failed to produce more than two clusters or that assigned the 

majority of users to noise were excluded. At that point, the other metrics were weighed 

against each other to determine the best clustering. Finally, the solution was evaluated in a 

larger context. Since the silhouette coefficient is the only metric whose values are not 

dependent on the values of the dataset, an additional clustering was conducted with K-means. 

The K-means clustering helps in the evaluation of the DBSCAN clustering by placing 

the evaluation metrics in context. However, the K-means algorithm has some significant 

differences compared to DBSCAN. First, it requires specifying the number of clusters, k, and 

then attempts to partition datapoints into clusters of equal area based on the distance function, 

which in this case was Euclidean, as was used in DBSCAN and is the standard distance 

function for K-means (Jain, 2010). Consequently, it cannot produce clusters of arbitrary 

shapes and instead produces spherical ones. The final important difference is the inability of 

K-means to detect noise. Despite these potential disadvantages, K-means is a standard 

clustering algorithm that is still powerful for cluster detection and therefore provides a 
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suitable point of reference for clustering comparison (Jain, 2010). The final hyperparameter 

for K-means is the centroids, which in this case were initialized randomly. Various values of 

k, centered around the number of DBSCAN cluster outputs, were used in the clustering, and 

the results were evaluated with respect to the evaluation metrics listed above. By providing 

this context, the K-means implementation helps determine whether density-based clustering 

is a suitable clustering algorithm for this dataset. 

Experimental Setup 

The analysis was conducted on a dataset from the Mobile DNA app of Ghent 

University. Volunteers downloaded the app to their Android mobile phone devices and 

allowed it to track their phone activity in the background, which synced to the app data 

servers. The app primarily tracked which apps users engaged with, when, and for how long, 

as well as when notifications were received and for what app. A subset of 3,043 participants 

with data for an average of 17 days (standard deviation of 6 days) was provided for the 

purposes of this research. Two datasets were provided, namely the app events and the 

notification data. 

From the app events data, the following variables were used for this research: user id, 

session id, application, start time, and end time. The session id field identified all app events 

that belonged to the same session, where a session starts with the activation of the phone 

(turning on the screen) and ends when the lock screen turns back on (regardless of whether 

the phone is actually locked or not). The second dataset contained the notification data, which 

included user id, application, and time.2 

Before the features were created, the data was preprocessed using R, Python, and the 

packages of dplyr (Wickham, François, Henry, & Müller, 2018) and Pandas (McKinney, 

                                                           
2 The data included a column marking whether it was a notification that alerted the user or 

was a background notification. For the purposes of gauging responsiveness to the phone, only 

the former was included. 
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2010). First, system applications were removed since they represented background or system-

based phone activities, such as using the navigation bar, and did not provide information 

about a specific activity. The second step was to remove any sessions with non-continuous 

app events. There were a small number of anomalies where an app event from one session 

was interspersed among app events from another session, likely due to bugs in the tracking 

software. Although only a small percentage of data points, it was important to remove them 

in order for the further logic to hold consistently. 

The next preprocessing steps involved combining app events in order to best reflect 

phone usage. There were many instances of applications that were used consecutively, i.e. 

Chrome followed immediately by Chrome. In these cases – where it was in the same session 

and no apps were used in between, instances of two or three of the same app used in a row 

were combined and treated as one, which allowed aggregation of similar app sequences, and 

is the standard for such behaviors (Natarajan et al., 2013). For example, the activity of 

“Chrome – Chrome – WhatsApp” is in effect the same as “Chrome – WhatsApp.” Due to 

technical constraints, longer consecutive sequences of the same app (sets of four or more) 

were not combined; however, they only account for a very small percentage of data points. 

Creation of a notification response time column was also part of the preprocessing. 

The app events and notification data were combined, and if a notification occurred for an app 

before the start of the session (but after the end of the previous session), then two response 

times were calculated: time to session and time to app. The response time to session was the 

difference between the notification time and the start time of the first app in the session. The 

time to app was the difference between the notification time and the start time for that same 

app. If the user did not use that app in the following session, no value was calculated and 

missing values were handled in the feature creation. 
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Finally, many of the features were based on the session-level, so the app events were 

aggregated according to the session id. Columns with counts for distinct and total app events 

and the count of WhatsApp events were created to be used for particular features. App 

“trains” were also compiled at the session level. A train is defined as the sequence of 

applications used in a session, for example, “Chrome” or “Chrome – Whatsapp.” A train 

represents the entirety of a session, so trains and sessions have a one-to-one relationship. 

Preprocessing the data allowed for customization of the data provided and for the creation of 

features that captured important aspects of phone use. 

Features 

After preprocessing, the next step was to engineer the features, which was completed 

using R and Python. In this section, the details of the features are explained and some 

descriptive statistics are provided. They tended to have a large number of outliers, which are 

detailed at the end of this section. The higher value outliers have been removed from the 

charts below in order to better visualize the distribution of the majority of the users. The 

charts also represent the data post-interpolation, to provide better context of the values that 

served as input to the PCA and subsequent clustering algorithm. 

Between sessions duration. The between sessions duration feature is the median time 

in seconds between sessions per user, calculated by subtracting the end time of one session 

from the start time of the next session and calculating the median per user. For missing 

values, which would occur if a user only had one session, the value was interpolated with the 

median value across users. The median between seconds duration was 338 seconds (5.6 mins) 

but the mean was 689 seconds (11.5 minutes) (SD = 4,390 seconds or 73 mins). Figure 1 

shows this feature is highly skewed, as supported by very high skewness (36.5) value. The 

prevalence of low median response times shows fragmented user behavior and that many 

users consistently engage with their phone. 
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Multi app sessions. The multi-app sessions feature is the proportion of sessions, out 

of total sessions, where a user had three or more app events. The median proportion across 

users is 25.6% (M = 27.7%, SD = 11.6%). These metrics, along with Figure 2, suggest a 

relatively normal distribution; however, there is a spike at the 0% mark, showing a number of 

users only ever used one or two apps per session. 

Single app sessions. The single app sessions are the proportion of sessions with only 

one app event, which overall account for 55% of sessions. Across users, single app sessions 

account for 53.0% of their sessions on average (Mdn = 53.8%). Figure 2 below shows a slight 

negative skew, also supported by a skewness value of -0.50. 

Repeat app sessions. The repeat app sessions feature is the proportion, out of total 

sessions, of sessions that contain a repeat of an app non-consecutively. For example, 

“Chrome – WhatsApp – Chrome” would be a repeat app session. Such a low median value of 

17.2% (M = 19.6%, SD = 10.2%) is less surprising when considering such a high percentage 

Figure 1. Histogram of Users by their Median Duration 

Between Sessions in seconds. High-valued outliers have been 

excluded, but the rest of the users still display a positively 

skewed distribution, showing users engage with their phone 

at frequent increments. 
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of session are single app sessions. Figure 2 shows this distribution and suggests it is slightly 

skewed, as supported with a skew value of 2.1. 

Repeat app WhatsApp. The repeated WhatsApp feature is the proportion of sessions 

with multiple non-consecutive instances of WhatsApp out of total WhatsApp sessions. This 

feature was included in order to highlight conversational phone behavior as a particular 

aspect of repeating behavior. Unlike the overall repeat app feature, this feature is highly 

skewed, with a median value of 1.7% (M = 3.0%, SD = 4.3%). Figure 2 supports this, as does 

the high skew (5.97) value, and shows that the large percentage of users (19%) who do not 

repeat WhatsApp, i.e. have 0% feature value, are driving the shape of the distribution. 

 

 

 

 

Figure 2. Histograms of Features based on Proportion of Sessions per user. The upper 

left chart shows a somewhat normal distribution, while the upper right and lower left 

show the distributions are skewed. The high spike at zero in the lower right chart shows 

a significant percent of users do not engage with WhatsApp multiple times in a session. 
Note. High-valued outliers have been excluded to aid in visualization. 
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Trains top overall. The top trains overall feature is the top 10 multi-app trains across 

all users, where multi-app trains contain at least two apps in a session, and “top” is defined as 

the trains that occur most often across all users and sessions. As noted above, a train 

represents the entirety of the session, so for the train “WhatsApp – Facebook App,” no other 

apps were used before or after in that session. The feature metric is each user’s percent of 

trains (i.e. sessions) that are that top train. If a user never uses that train, then the value is 

zero. This feature incorporates the apps in sequence information as well as quantifies the 

behaviors that are similar across users. The most popular train overall was “WhatsApp – 

Facebook App,” which 38% of users exhibited at least once, and it accounts for, on average, 

27.5% of those users’ trains (Mdn = 22.2%). However, since the remaining 62% of users 

have 0% usage, many of those 38% of engaged users are considered outliers, and the overall 

average usage is only 10.5%. The first chart in Figure 3 below shows the large spike at 0% 

followed by the remaining users who did engage with the train. The same pattern of 

distribution can be seen for the next most popular train, “Facebook Messenger - Facebook 

App,” which 35.8% of users engage with at least once. The mean of those users is 24.9% 

(Mdn = 16.7%) but the overall mean is 8.92%. Of the top trains, the “Contact – Call” train 

had the highest average usage overall at 16.7% and the same pattern as the other top trains, 

where a large percentage of users (30.1%) engaged with it a large majority of the time (M = 

55.5%, Mdn = 56%). However, this particular train only applied to Samsung users as the app 

name was Samsung specific, so if the train were to incorporate all Android users, it might 

show a different distribution. This highlights a drawback of the app features – they can be 

very specific and would benefit from grouping similar apps together if they serve the same 

purpose. 
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Trains top per user. The top trains per user feature is the proportion of sessions for 

each of the top five multi-app trains per user. The trains for this feature are defined as above, 

filtered to trains that include at least two apps. If a user does not have five qualifying trains, 

then the value is set to 0. This feature quantifies repeated behavior that is distinct to a 

particular user. Figure 4 shows that, after removing outliers, these distributions are more 

spread out than those of the overall top trains, and that there is a large difference among users 

in the frequency with which they use their top train (SD = 5.45%). However, overall users do 

not show very frequent repeated behavior, as the top train only accounts for on average 

5.50% (Mdn = 4.22%) of user sessions. 

Figure 3. Histograms of Distributions of Top Overall Trains. The large spikes at 0% 

indicate that a significant portion of users have not used these apps in these sequences. 

However, the remaining users have significantly higher usage, and the most extreme 

users, high-valued outliers, have been removed for the purposes of visualization. 
Note. FB stands for Facebook. 
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Notification response time. The notification response time feature reflects two 

response types: response to session and response to app. The response to session quantifies 

how long it takes a user to start a phone session after any app has created a notification. The 

response time to app quantifies how long it takes to respond to a particular app for which a 

user received a notification. Then, for all notifications, the median and standard deviation 

values of those response times per user were calculated. If the value was missing (if a user 

gets notifications for an app they never open during the tracking period) then the value was 

interpolated with the median response time across users. The median and mean response time 

to app are 2,754 seconds (46 mins) and 23,500 secs (392 mins), respectively. The median and 

mean response time to session are much faster, at 748 seconds (12 mins) and 7194 seconds 

Figure 4. Histograms of Top Trains per User. As the ranking of the train decreases, the 

distribution moves left and narrows, with the starkest difference between the Top 1 and Top 

2 trains. This suggests most users have a most frequent set of apps they use in a row, with 

varying, but significant, frequency. However, fewer users have multiple trains that they 

repeat at such a rate. 
Note. High-valued outliers have been excluded. 
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(120 mins), respectively. Figure 5 shows concentration of low values for median response to 

session, supported by the overall low standard deviation, which suggests shows users quickly 

and consistently initiate sessions after notifications. However, the response to app distribution 

is more spread out, showing some users do not engage with all notifications. 

 

 

 

 

Top apps response time. The top apps response time is a more detailed version of the 

notification response time since it is the median response time for the top three apps per 

person to which that user responds most quickly. This feature also separates response to 

session and to app, so it contains six columns of data in total. If there were no values for one 

Figure 5. Histogram of Features for Notification Response Time per User. These charts show all 

the features are positively skewed. The distribution for response to app (lower left) is much more 

spread out than that of response to session (upper left), showing more inconsistency with regard to 

response times. But overall, users respond quickly to notifications. 
Note. High-valued outliers have been excluded to aid in visualization. 

 

Distribution of Notification Response Time Features  
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of these datapoints, (when the user does not have three apps to which they always respond), 

they were interpolated with the median value across users. This feature provides more nuance 

than the overall response time because it highlights apps to which a user may respond 

quickly, even if, overall, they have a much slower response time. The prevalence of such 

behavior is supported by the lower average response times compared to the notification 

response time feature. For the top response to session, the median response time is 10.7 

seconds (M = 937 seconds or 15.6 mins).  For the top response to app, the median response 

time is slower, 43 seconds (M = 2,264 seconds or 37.7 mins). Figure 6 shows that the second 

and third most popular apps also have lower response times than the overall, and that the data 

is highly positively skewed.  

 

 

Figure 6. Histograms of Response Times for Top Apps per User. The distributions for 

response time to app are much more spread out than those for response time to session, 

which suggests generally users respond quickly to their phones, but some users may not 

engage with the actual app that notified them. The distributions for the third-ranked app 

are more also spread out than the distribution to the top notification app. This suggests 

many users have at least one app they respond quickly to, but their third-most important 

app demands far slower reaction times than their first. 
Note. High-valued outliers have been excluded to aid in visualization. 
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Outliers. As mentioned at the beginning of the section, the plots of the distributions 

of features above display the data without the high valued outliers. However, it is important 

to consider them, since outliers were found in all features. On average, 10.9% of users were 

considered outliers for a given feature. Figure 7 shows the breakdown of outliers per feature. 

The Top Train of “WhatsApp – Instagram,” had the highest number, with 22% of users as 

outliers, the majority with significantly high usage (as opposed to low-valued outliers). 

Figure 7 splits the features into two main types: features that represent the proportion of 

usage and features that represent time between phone activity. For the proportion-based 

features, for all except the single app sessions, outliers were predominately users who had 

higher than typical usage for the given feature. For the response time features, outliers were 

found on both the low and high ends of the spectrum. Outliers for the response time for an 

individual’s top apps were generally on the low end of the spectrum, representing users who 

responded very quickly to phone notifications for their set of top apps. The median response 

time to session for notifications overall also had predominately low outliers, representing 

fast-responding users. However, for notification response time to app and between session 

duration, outliers were almost exclusively on the higher end of the spectrum, representing 

users who were unusually slow to respond or had longer than average breaks between phone 

sessions, respectively. The standard deviation values for notification response time were also 

exclusively high-valued outliers, showing some users have significantly varying behavior. 

These outliers explain some of the highly skewed data described above. Additionally, they 

suggest the data is likely to contain a large amount of noise, which was taken into account 

when choosing and implementing the clustering algorithm. 
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After the features were created, the next step was to combine them into a single array 

for clustering, and then to standardize the values. Standardization is important for the 

principal component analysis because the features have very different values and ranges, and 

standardizing ensures all features contribute with equal weight. Both the standardization and 

PCA were implemented with their respective functions from the Scikit-Learn (Sklearn) 

package for Python (Pedregosa et al., 2011). 

After determining the principal components, the number of components to use was 

chosen based on the preserved amount of variance in the data. Figure 8 shows the cumulative 

variability explained by each of the principal components. At approximately 24 components, 

Figure 7. Number of Outliers per Feature by Type. The upper portion of the chart shows 

that for features that quantify the proportions of sessions of an activity for a user, 

outliers tended to be high, meaning there exists some users who have high usage for 

those features. On the other hand, the prevalence of low valued outliers in the bottom, 

response-time portion of the chart, shows that a significant portion of users are respond 

much faster than average. 
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which account 98.3% of the variance, the increase in variability with each additional 

component begins to slow. However, this does not significantly reduce the feature space, so 

additional sets of principal components were evaluated. The first five principal components 

were chosen because they accounted for more than half the variability (51.5%), and the first 

ten were chosen because they accounted for a larger majority (72.2%) while still reducing the 

feature space. The clustering solution was implemented on the three sets of reduced features 

to determine which, if any, would provide an optimal clustering solution. 

 

 

 

Finally, the clustering algorithm DBSCAN was applied to the reduced features, 

implemented and evaluated in R using the libraries of factoextra, cluster, fpc, and NbClust 

(Charrad, Ghazzali, Boiteau, & Niknafs, 2014; Hennig, 2018; Kassambara & Mundt, 2017; 

Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2018). The algorithm requires two 

Figure 8. Cumulative Percent of Variance Explained by Principal 

Components. The line shows a steady increase in variance accounted 

for by additional principal components. The red dot at 24 

components marks the point at which the increase in variance finally 

starts to slow, which is near the max of 30 components (as total 

number of dimensions equals 30).  
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hyperparameters as input: epsilon (distance between points) and minpts (minimum number of 

points required for a cluster). As mentioned above, the ideal value for minpts should be twice 

the number of dimensions, or higher if there is a significant amount of noise (Sander et al., 

1998). Therefore, the minpts values for the 5, 10, and 24 principal components were initially 

set to be 10, 20, and 48, respectively, and since the feature statistics suggest a significant 

amount of noise, higher values were also evaluated. Table 1 specifies those values. 

 

 

 

 The second hyperparameter, epsilon, is dependent on the minpts value, and can be 

found by determining the “elbow” of the kNN-distance graph described above (Ester et al., 

1996). Figure 9 shows the kNN-distance plots for each set of principal components and their 

ideal minpts values. For example, the upper-left chart of Figure 9 displays the 9-distance for 

the set of five principal components and shows an ideal epsilon value ranging somewhere 

from 2 to 10. Figure 9 also displays the 47-distance chart for the set of 24 principal 

components (bottom-right), which shows a much larger range for epsilon, anywhere from 5 

to 20. Higher values of minpts were also evaluated to account for noise, so the kNN-distance 

charts were also plotted for those to determine the appropriate epsilons. Finally, after the first 

Table 1 

 

Values of Hyperparameters Minpts and Epsilon used in Grid Search of DBSCAN 

 First Iteration Second Iteration 

Dimensions 

(PCA) 

Min Pts Epsilons Minpts Epsilon 

5 10, 15, 20, 30, 

50 

2-15 5, 10, 15, 20, 

30, 50 

.5, 1, 2-15 

10 20, 25, 30, 50, 

50 

4-18 10, 15, 20, 30, 

40, 50 

1, 2, 3, 4-18 

24 48, 50, 60, 75, 

100 

8-20 24, 48, 50, 60, 

75, 100 

3, 4, 5, 6, 7, 8-

20 
Note. Values in bold indicate the additional values added after the first iteration of the grid search. 
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round of evaluation, all solutions produced only one large cluster with a varying amount of 

noise. Therefore, the range of minpts and epsilons was expanded to determine if adjustments 

would produce clusters. The epsilon range for the original minpts values was expanded by 

considering smaller values. Additionally, smaller values of minpts were included, set to 

match the number of dimensions, which allowed for smaller clusters, and the corresponding 

epsilon values were determined in the same manner as before. Table 1 shows these 

combinations of minpts and epsilons that were used during the first and second iteration of 

the grid search. 

 

  

 

 

 

After the second iteration of the grid search, the set of five principal components 

produced clustering results, and they were evaluated with respect to the metrics mentioned in 

Figure 9. kNN-Distance Plots for 

Suggested Minpts Values. The point at 

which the distance starts to significantly 

increase can be used as a suitable epsilon 

value for the DBSCAN hyperparameter. 

 
Note. k is one less than minpts since a cluster 

would contain a point and its k nearest neighbors, 

i.e. k + 1 
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the previous section. A K-means clustering was also implemented to provide context to the 

evaluation metrics and help determine the appropriateness of using DBSCAN as the 

clustering algorithm. The values of k were originally chosen to be 2 through 10, but since the 

SSE continued to drop as k increased, clusters of size 11 to 15 were also included to evaluate 

the results of more clusters and understand the trend of the SSE, which for K-means is an 

effective evaluation criterion. The results of these two clustering solutions were then 

compared to help evaluate the quality of the overall clustering solution. 

Results 

The results show that the optimal clustering solution for DBSCAN grouped the 

majority of users into one large cluster, with an additional small cluster and a varying amount 

of noise. This suggests that clustering may not be the most ideal way to analyze mobile phone 

usage. Additionally, the results of using PCA showed that fewer dimensions resulted in a 

better clustering, and that notification response time features were the largest driver of 

variability.  This section contains results from the analysis of the principal components of the 

features and of the clustering solutions using DBSCAN and K-means. 

Principal component analysis was completed on the set of standardized features, and 

the results tell us which features account for the most variance in the data and therefore 

provide the most information about the users.  Table 2 contains the features with the three 

strongest correlation values between them and the principal component, for the first three 

components. For the first component, the response time features correlated most with the 

component, and therefore explained the most variance in the data. Table 2 shows only the 

values for the top three features, but in actuality, all of the response time features correlated 

more strongly with the first component than any of the other features, and the top five had 

correlation values of 0.73 or greater. Such strong values for the notification features indicate 

this component generally represents the notification response time for the data. Additionally, 
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all of these features are positively correlated with each other.3 For the second component, the 

top trains features explain the most variance and were all strongly (negatively) correlated 

with the component. In fact, all of the top individual trains features correlated most strongly 

with the second component, but the Top 1 Train had a significantly weaker correlation with 

the component (-.54) than the other individual train features (-.74 or stronger). This suggests 

more users may have similar behavior regarding their most frequent phone behavior, and that 

the differentiating factors are captured with users’ second, third, and fourth most frequent 

behaviors. The third component had the strongest correlation with the features that reflect 

session types with respect to number of apps used. As expected, single app sessions are 

inversely correlated with multi app sessions, and multi app sessions are positively correlated 

with repeat app sessions since the more apps a user engages with in a session, the more likely 

they are to return to an app within that session. 

 

 

Table 2 

 

 

Top Correlation Coefficients for First Three Principal Components and Features 

Top Features Correlation Coefficients 

Principal Component 1 
 

Notification Response Time to App (median) 0.890 

Top 3 Response Time to Session 0.837 

Top 1 Response Time to App 0.744   

Principal Component 2 
 

Top 3 Individ Train -0.862 

Top 4 Individ Train -0.840 

Top 2 Individ Train -0.793   

Principal Component 3 
 

Repeat App Sessions -0.905 

Single App Sessions 0.883 

Multi App Sessions -0.926 

                                                           
3 Note, the direction of the correlation value only provides information regarding he relationship between the 
two variables, but cannot be used to infer additional information about the feature since the implementation 
of PCA can cause these to be positive or negative. 
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As outlined in the Experimental Setup section, the optimal number of principal 

components needs to preserve a significant amount of explained variance of the features 

while reducing the feature space and resulting in optimal clustering. This resulted in 

evaluating the set of 5, 10, and 24 principal components, which accounted for 51.4%, 72.2%, 

and 98.3% of the variance, respectively. The clustering algorithm was applied to these feature 

sets, and all outputs for the first iteration of minpts and epsilons produced only one large 

cluster, with a varying amount of noise, so smaller values of minpts and epsilon values were 

included. Solutions with more than one cluster were found for the set of 5 and 10 principal 

components, but not the set of 24. However, the solutions for 10 principal components 

resulted in 53% or more of the users designated as noise, so they were excluded. Therefore, 

the set of five principal components produced the most sufficient clustering solutions. 

Those solutions resulting from five principal components were then evaluated 

according to the metrics outlined above. After eliminating solutions that did not produce 

more than one cluster or had more than 50% noise, there were a total of five solutions. After 

evaluating with respect to the remaining metrics and guidelines, the solution resulting from a 

minpts value of 5 with an epsilon of 4 was considered the optimal solution. Table 3 lists the 

hyperparameters and evaluation metrics for this solution in comparison to the other four 

solutions. The optimal solution produced two clusters, one large with 3,003 users and one 

small with 6 users, with 34 users designated as noise. Although that solution has a higher 

SSE, the difference between the average within distance and other solutions is not as high. 

Additionally, the average between distance is much higher than any of the other solutions. 

This relationship is supported by a high silhouette coefficient – much closer to the ideal value 

of one than the other solutions – and a significantly higher Dunn index than the other 

solutions. 
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Table 3 

 

Hyperparameters and Evaluation Metrics for Clustering Results of DBSCAN 

minpts ε 

Num of 

Clusters 

Noise 

Size SSE 

Avg 

Within 

Dist 

Avg 

Between 

Dist Silhouette 

Dunn 

(Adj.) 

15 0.5 2 1,386 4,207 2.07 2.65 0.17 1.28 

5 0.5 6 763 7,616 2.40 3.75 0.16 0.47 

10 1 2 297 12,334 2.75 5.33 0.45 1.94 

5 1 3 211 13,902 2.86 5.09 0.21 1.31 

5 4 2 34 23,817 3.36 12.38 0.73 3.38 

Note. Row in bold indicates the optimal solution based on the combined performance of all evaluation metrics. 

 

Visualizing the results can also provide some understanding of the clustering 

solutions. Figure 10 shows the users plotted according to cluster along the first and second 

principle components and along the first three components. The majority of the data is 

densely connected, and the large cluster captures this. The small cluster is in the region 

between where the densest data starts to thin and the noise begins. Although based on only 

two and three dimensions, the visuals show the clustering does seem to capture the closest 

users with respect to the density, but as it incorporates most of the users, perhaps a cluster is 

not the best way to describe them.  

 

 

Figure 10. Users by DBSCAN Cluster on Principal Component Axes. The left graph 

shows the clusters in two dimensions. The main cluster is very dense and DBSCAN 

captures its unusual shape. The same clusters are plotted in three dimensions in the 

right graph. The noise point that seems to belong to Cluster 1 in the right graph (right 

in the middle of the cluster) is shown to be clearly noise when viewed in 3D. 
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  In order to provide more context to this solution, the DBSCAN clustering can also be 

compared to a simple K-means clustering, which was also performed on the set of five 

principal components. The clustering algorithm used values of k from 2 to 15. Figure 11 

shows that as the number of clusters increased, the SSE decreased, slowing at around eight 

clusters. Additionally, as shown in Figure 11, as the number of clusters increases, the 

algorithm beings to assign only one point to one of the clusters, likely due to the inability for 

K-means to account for noise. 

 

 

 

 

After all the evaluation metrics were considered, the solution from eight clusters was 

determined as the best among the k values. Table 4 compares the results for the best results 

from DBSCAN and K-means, and shows that while the SSE for K-means is slightly lower 

and the average within distance is markedly lower, DBSCAN has pointedly better results for 

the additional metrics. Figure 12 shows the K-means clusters visualized over the first two and 

first three dimensions of the data. In the left chart, some of the clusters look cohesive and 

separate, such as cluster 7, but other cluster groups, such as 6, are clearly comprised of the 

Figure 11. Error and Minimum Cluster Size for Various Values of K. The left chart 

shows that as k increases, the error decreases, with a sharp drop after 11 clusters. 

However, the right chart shows that the decrease in SSE is because at 12 clusters, the 

algorithm starts assigning only one point to one of the clusters. 
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noise in the data. Figure 12 visualizes these clusters in three dimensions and shows the rest of 

the clusters appear to have somewhat arbitrary boundaries. The better performance of 

DBSCAN supports its suitability as the clustering method, and therefore further supports the 

claim that clustering may not be the optimal way to evaluate mobile phone behavior.  

 

  

Table 4 

 

Comparison of Optimal DBSCAN Solution with Optimal K-means Solution 

 Hyperparams       

Algorithm minpts ε k 

Num of 

Clusters SSE 

Avg 

Within Dist 

Avg 

Between Dist Silhouette 

Dunn 

(Adj) 

DBSCAN 5 4  2 23,817 3.36 12.38 0.73 3.38 

K-means   8 8 20,371 1.87 4.31 0.24 0.13 

 

 

 

 

 

 

Figure 12. Users by K-means Cluster on Principal Component Axes. The left 

graph displays the clusters from the K-means clustering in two dimensions. 

Some clusters seem appropriate, such as Cluster 7, but when viewed against 

only the first two principal components, others appear to be overlapping. The 

right graph plots these clusters in three dimensions. The 3D graph shows K-

means has assigned the noise points from DBSCAN into various clusters. 
Note. In order to better visualize the results, the most extreme outlier point (seen in the upper 

righthand corner of the left plot), has been removed from the right plot. This is likely the point 

that larger values of k assigned to its own cluster. 
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Discussion 

 The purpose of this study was to determine whether clustering is an appropriate 

method to segment users into groups based on their mobile phone behaviors. It also aimed to 

provide new features for such a task, along with standard features, and use principal 

component analysis to help understand their importance, as well as the overall effects of 

reducing the dimensionality. Finally, it aimed to verify the choice of DBSCAN as an 

appropriate clustering algorithm for the data.  

Before applying the clustering algorithm, the mobile phone feature space, which 

originally included 30 dimensions, was reduced using principal component analysis. Analysis 

of the correlation coefficients of the principal components showed that the first component 

was primarily comprised of information regarding the notification response time features, as 

they had the strongest correlation with the component. These features were new to the 

premise of mobile phone behavior analysis and profiling, and suggests they are important 

concepts to consider when analyzing user behavior. The second component primarily 

incorporated the frequency with which users engaged with their personal top “trains” 

(sequences of apps). However, the first and second components only account for 17% and 

11.5% of the variance, respectively. The majority of principal components, 24, were required 

to account for most (98.3%) of the variance in the data, but the goal was to significantly 

reduce the feature space, so smaller sets of components (5 and 10) were included in the 

clustering. The set of five principal components resulted in the best clustering solution, 

despite only accounting for 51.5% of the variance in the data, which means a significant 

portion of information from the features was discarded. This is likely due to the high number 

of outliers, or noise, seen in the features. 

In fact, the distributions for most of the features were negatively skewed with a 

significant number of high-valued outliers, and the subsequent amount of noise in the data 
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played a significant role in the implementation and results of the clustering. Principal 

component analysis does help minimize noise (Gauch, 1982), and the better performance by 

fewer principal components was likely due to the fact that they captured the least amount of 

noise in the data. However, this means that fewer features drove the clustering algorithm, and 

some informative feature information may have been lost. Furthermore, DBSCAN was 

chosen because it is able to account for noise in the data. However, many of the sub-optimal 

clustering solutions were rejected because they assigned too many users as noise and 

therefore did not provide meaningful results. Perhaps better clustering could have been 

achieved using features with less skewed data or if additional preprocessing steps took the 

outliers into account. 

Of the DBSCAN solutions that did not designate the majority as noise, the optimal 

solution resulted in the majority of users being placed in one large cluster, another small 

cluster of six users, and the rest, 1.1%, labelled as noise. The goal of the clustering was to 

evaluate if it is a reasonable method to automatically segment phone users in order to aid in 

the profiling of users. However, assigning most users into one group would not result in 

useful characterizations. Instead, it suggests that mobile phone users belong on a spectrum 

that reflect behaviors in a continuous way, as opposed to belonging to a set of discrete 

profiles. This is an important insight because many of the previous studies mentioned above 

used discrete features when describing and evaluating mobile phone usage (de Montjoye et 

al., 2013; Zhao et al., 2017). In fact, trying to describe phone users in discrete buckets is the 

central premise of studies that correlate phone use to personality or socio-demographic 

information, which is inherently categorical (Chittaranjan et al., 2013; Rivron et al., 2016). 

Studies that predetermine the boundaries of a profile make assumptions that, as the clustering 

solution suggest, may not be inherent in the data. 
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The lack of distinct user groups may be true for the majority of users, but the 

existence in the clustering solution (and other sub-optimal solutions) of one or more small 

clusters, suggests there could be value in using clustering to identify particular groups of 

users. Such detection of small but unique behavior is similar to the anomaly analysis 

completed in (Hyun Oh & Suk Lee, 2003), where the behaviors themselves were clustered by 

user and anomalous behavior per person was identified. However, in this study, it has been 

shown that clustering could identify “anomalous” users. These very small but distinct user 

groups can be important for the purposes of identifying users at risk for problematic phone 

use behavior (Elhai et al., 2017; Twenge et al., 2018). 

Finally, the K-means clustering algorithm was implemented to support choice of 

DBSCAN as an appropriate algorithm for this analysis. The K-means clustering overall 

resulted in lesser quality clusters, supporting the claim that DBSCAN was better suited to 

identify clusters in the data. DBSCAN was chosen because of its advantages over K-means, 

namely that it can cluster arbitrary shapes and account for noise; however, it has certain 

drawbacks. First, it is highly sensitive to the choice of hyperparameters. In order to achieve a 

clustering solution, the minpts and epsilon values required significant tuning, and eventually 

the minpts were set to lower than the recommended value based on the number of 

dimensions. This allowed for smaller clusters, which can help identify small groups of users, 

but it proved unsuccessful for finding larger clusters of users. Additionally, DBSCAN 

assumes a constant density over the datapoints, and as can be seen in the visualizations 

above, this may not be the case. Therefore, additional research that wishes to utilize 

clustering to identify small groups of users would benefit from incorporating clustering 

algorithms that take into account arbitrary shapes and noise as DBSCAN does, but that also 

allow for varying densities, such as some implementations of hierarchical clustering (Halkidi 
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et al., 2001). One avenue for future research would then be investigation into the 

characteristics that define these small clusters. 

Conclusion 

The results of the clustering suggest that clustering is not the optimal method to 

evaluate mobile phone behavior data at the user level. However, instead of supplementing 

studies that look to profile users with clustering, it instead suggests that profiles should be 

constructed with caution since users are more appropriately represented on a spectrum. 

Additionally, it found that notification response time should be included in future analysis as 

it is an important differentiator between users. Nevertheless, studies that aim to find niche 

groups of phone users could benefit from clustering, especially if they take into account the 

distribution of features and the amount of noise present in the data. Clustering using 

DBSCAN or other similar clustering solutions could then provide value by identifying small 

groups.  
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