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Abstract

Stress levels seem to have risen the past years. More people are claim
to feel longer periods of stress. This can have negative health effects.
Prediction of stress is important for stress detection, treatment and the
prevention of chronic stress. Phone use has also increased worldwide.
Phones play a big role in our everyday lives, which has led researchers
to believe patterns in phone usage could identify people’s emotions and
personality. The present study uses these phone usage patterns to predict
stress. Different models have already been built to obtain information from
phone usage data, focusing on app frequency. Previous research suggested
that the order of used apps could present additional information for stress
prediction. The results of the present study showed that, while both
non-sequential frequency and sequential patterns are able to predict stress
better than the majority baseline, the non-sequential patterns were more
useful for stress prediction. This suggests that sequential patterns might
not provide additional information for stress prediction. The results also
provide a new exciting stress prediction method, which could be combined
with existing methods.

Keywords: stress prediction, mobile phone usage, bag-of-apps, sequential
pattern mining, cSPADE

1 Introduction

Over the last years, perceived stress levels seem to have risen (Hagquist, 2010;
Korn Ferry Institute, 2018; O’Malley, 2019). Higher perceived levels of stress
can have serious ramifications, such as sleep difficulties, performance quality
decrease and even depression. (AbuAlRub, 2004; Majeno et al., 2018; O’Malley,
2019). Prediction and detection of stress is important for health organisations
and companies trying to identify risk groups or create a risk profile and has
been done before (Maxhuni et al., 2016, 2017). It has been suggested that
mobile phone usage data could be used to predict perceived stress, due to the
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big role mobile phones play in our everyday lives (Lepp et al., 2014; Selkie, 2019;
Weilenmann & Larsson, 2002). This study aims to create a general model for
perceived stress prediction, by utilising mobile phone usage data.

Stress research has been done in many different ways. Some studies have
used a more medical approach to perceived stress detection and prediction, using
heart rate variability or galvanic skin response measures (Bakker et al., 2011;
Pourbabaee et al., 2018). Because these data are costly and hard to obtain,
other options have been analysed. One promising option was phone usage data.
Approximately 5.1 billion unique mobile phone users were counted at the start
of 2019, which is around 67% of earth’s total population (Kemp, 2019). We
use our phones continuously for a multitude of purposes. (Lepp et al., 2015;
Selkie, 2019; Weilenmann & Larsson, 2002). With an average phone use of 3
hours per day, phones are used during a significant amount of our waking hours
(Fennell et al., 2019). Do & Gatica-Perez (2010) created a framework, named
bag-of-apps, to retrieve meaningful non-sequential patterns from phone usage
data, mainly focused on frequency of app usage. It has since been suggested
that sequential app usage patterns could provide additional information on
different topics (Farrahi & Gatica-Perez, 2014; Yan et al., 2012). Alibasa et al.
(2019) used sequential app usage patterns to predict mood. They suggested
that this approach could be used to predict perceived stress levels. The current
research aims to determine the stress prediction performance of models based
on sequential patterns and models based on non-sequential app usage patterns.
This led to the following research question:

To what extent can sequential or non-sequential app usage patterns predict
daily stress levels?

This study hopes to determine the added value of sequential patterns for
stress prediction. Stress ’levels’ refers to a six-point Likert-type item, which
is used in this research to measure stress. This method captures the different
intensities of stress from low to high and is similar to the method used in Ferdous
et al. (2015). To answer the research question, a model using sequential app
usage patterns is created and tested. This model analyses sequential patterns
between every individual app (category). A Bag-of-Apps type model is also
created. This model uses the frequency of every individual app (category),
without any sequential pattern between them. These models, using different
types of patterns, are compared to analyse the importance of sequences in app
usage for stress prediction. This is formulated in the following sub question:

How do sequential pattern mining models and bag-of-apps models differ on
stress prediction performance?

Stress can be measured in levels (Ferdous et al., 2015) or binary, as proposed
by Alibasa et al. (2019). It could be interesting to predict the severity of stress,
as well as the presence of stress in general. Detection of general stress presence
could be important for general prevention and treatment of symptoms, whereas
categorical stress detection could be used to suggest specific intensity-related

2



treatments (Bakker et al., 2011; Glanz & Schwartz, 2008). The models in this
study were tested on their stress prediction capabilities using stress measured
on a six point Likert-type item and a binary scale, which measured the presence
or absence of stress. This was summarised in the following subquestion:

What is the effect of binarised stress levels on the prediction performance of
sequential pattern mining and bag-of-apps models?

Answers to these questions could provide a new method for stress prediction.
Both the Bag-of-Apps (BoA) and the Sequential Pattern Mining (SPM) approach
have not been used to predict stress, yet. The results showed that both the
BoA and the SPM model could perform above baseline. Binarised stress levels
improved the results of both models. Social media, messaging and lifestyle
categories proved to be important for the prediction of the models. The BoA
model outperformed the SPM model in all scenarios, which raised questions
about the added value of sequential patterns for stress prediction.

2 Related Work

As mentioned, there seems to be a rise of perceived stress levels over the past years
(Korn Ferry Institute, 2018; O’Malley, 2019; Hagquist, 2010). Pressure of constant
change on the work floor, due to the fast-paced online world, is mentioned as a
possible cause. Some studies mention mobile phones and the constant connection
phones provide as an additional contributor to stress (Horwood & Anglim, 2018;
Y.-K. Lee et al., 2014; Horwood & Anglim, 2019; Thomée et al., 2011; Kuss et
al., 2018). More specifically, articles suggest that social media and work related
apps, like email, could be nurturing constant feelings of stress (Kushlev & Dunn,
2015; K. B. Wright et al., 2014).

The consequences of stress have been known for decades. Quick et al.
(1987) stated that badly managed stress can lead to a multitude of medical and
psychological problems, ranging from alcohol abuse to cardiovascular diseases.
In a more recent study on stress levels in the working age population, Wiegner
et al. (2015) discovered that more than half of the participants reported to have
stress to some extent. Among those who reported having stress to some extent,
two thirds showed signs of exhaustion, anxiety and burnout. Other articles also
reported sleep difficulties and depression as possible effects of stress (AbuAlRub,
2004; Majeno et al., 2018; O’Malley, 2019).

Acute stress is something we experience every day, whereas chronic stress can
be a result of prolonged acute stress (Bakker et al., 2011). This chronic stress
can cause the aforementioned health problems. (Bakker et al., 2011; Majeno et
al., 2018). That is why this research focused on daily stress level prediction.

2.1 Stress prediction

The prediction of stress levels is important for stress detection and treatment,
to prevent the health consequences described earlier. Stress prediction has
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been done using a vast array of methods. Inventions have even been done to
predict stress levels of drivers when driving in a motor vehicle (Woltermann
& Schroedl, 2003). Bakker et al. (2011) predicted stress using galvanic skin
response data. This data reflects sweat production, which was measured by
sensors on a participant’s body. Detection of arousals was used to determine
when a person is stressed or not. The study had trouble identifying the different
stressful events, mainly because the experiment was not done in a controlled
environment. This made it difficult to interpret the different spikes in the data.
Pourbabaee et al. (2018) researched stress based on heart rate variability. Stress
was measured by adding the scores on rumination and locus of control. Both
scores were measured on a five-point Likert-type item, which gave the total score
a range between two and ten. Heart rate variability, measured by ECG scans,
proved to be a good predictor for stress. Higher heart rates generally meant
more stress. The problem with these methods lies in the obtainability of the
data. ECG scans and galvanic skin response data are expensive and difficult to
procure.

A study by Reddy et al. (2018) used surveys to predict stress. Other studies
found different methods to predict stress. These methods focus on more accessible
data, collected in an unconstrained environment. An example of such data was
used by Soto et al. (2011). Phone usage data was used to determine a participant’s
socioeconomic status. The aggregated phone usage time was used as the primary
parameter. As previously mentioned, smartphones are more widely used than
ever, which is why it could provide researchers with an unconstrained look into
the habits of a participant (Björkegren & Grissen, 2018; Fennell et al., 2019;
Selkie, 2019).

Phone usage data has been used in numerous studies, with a variety of
purposes. It has been used to predict loan repayment (Björkegren & Grissen,
2018), detect depressive and manic episodes (Osmani, 2015), predict the next app
somebody is going to use (Baeza-Yates et al., 2015) and to predict Parkinson’s
disease progression (Anantharam et al., 2013). Ferdous et al. (2015) used
smartphone app usage data to predict the participants’ perceived level of stress.
The apps were categorised to predict stress levels on a Likert-type item, ranging
from zero to five. The prediction model used app category and time spent on
the app as predictors. The results showed that the user-centric model was good
for stress prediction, while the group behaviour model did not perform well.
Stütz et al. (2015) also used mobile phone data to predict stress, collected by an
app. This app sent out seven surveys per day to the participants. The results
showed significant correlations between stress and smartphone data. Different
basic usage features were created, such as mean app usage time and summarised
session times. The prediction results of these features were not very accurate.
This could be due to the small dataset, which used 15 participants and contained
approximately 100,000 data points.

The present research aims at creating a general model with a bigger real-
life dataset, not just suitable for user-centric stress prediction. Ferdous et al.
(2015) showed that group behaviour models scored moderately or bad on stress
prediction, when using duration of app use per category as the main variable.

4



Do & Gatica-Perez (2010) created a framework, named bag-of-apps (BoA), to
retrieve meaningful patterns from phone usage data, mainly focused on app
usage of participants. The BoA model is based on the bag-of-words model. This
model, frequently used in natural language processing, is used to quantify speech
and text (Zhang et al., 2010). Sentences or parts of speech are quantified by
measuring word frequencies in text, which results in a sparse matrix. The BoA
model treats apps like the words in a bag-of-words model. It quantifies the
app occurrence during a certain time period. This model proved to be capable
of finding useful patterns in app usage data. It has since been suggested that
sequential patterns in app usage could provide additional information on different
topics (Farrahi & Gatica-Perez, 2014; Yan et al., 2012).

Alibasa et al. (2019) proposed that a model based on sequential patterns in
phone use could predict perceived stress. They created a mood prediction model,
which also used sequential patterns as features. Mood was measured as being
positive or negative, and predicted by the presence or absence of a sequential
pattern. Their sequential pattern model did perform better than the baseline,
but only slightly. It was stated that a bigger dataset would likely increase the
accuracy of the model. The current study recognises these statements and builds
on previous research. A larger dataset is used, along with the frequency of
patterns as features. A BoA model, a non-sequential pattern model, is built and
trained to compare the results to a sequential pattern model.

2.2 Sequential pattern mining

The practice of obtaining sequential patterns is called Sequential Pattern Mining
(SPM). This method originated from association rule mining, which was intro-
duced by Agrawal et al. (1993). It uses baskets of items to find frequent itemsets.
These itemsets occurred often together, but did not have any particular order.

An algorithm to mine such association rules was proposed by Agrawal &
Srikant (1994). The algorithm uses support as a selection tool for selecting
frequent itemsets. Support is defined as the proportion of the total number of
baskets a rule appears in. If the support is higher than an arbitrary value, the
rule is saved as a frequent association rule. Association rule mining is used to
find unordered frequent itemsets.

To incorporate the extra information the order of items might contain,
Agrawal & Srikant (1995) created the Sequential Pattern Mining (SPM) method.
This method finds frequent itemsets in baskets of data. As a common example,
market basket data is used. Baskets are created by grouping items per customer
per transaction time (e.g. day). The SPM method finds frequent sequences of
items in all baskets. Srikant & Agrawal (1996) proposed an improvement to their
own algorithm, called the Generalised Sequential Pattern (GSP) algorithm. This
algorithm focuses more on the transactions made per customer-id and less on the
time constraint. However, it does allow users to set arbitrary time constraints
for the itemsets.

Zaki (2000) introduced a different method, called cSPADE (constraint Se-
quential Pattern Discovery using Equivalence classes). This method uses a
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vertical database layout, whereas the GSP method uses a horizontal layout. In
the vertical layout, each event-id or transaction time per customer-id has its own
basket, instead of a basket per customer-id. Furthermore, cSPADE provided
the user with the ability to assign constraints to the mining process, such as
the maximum size of itemsets and the maximum length of sequences. The two
methods were compared on runtime by Zaki (2001) and Verma & Mehta (2014).
Both studies found that cSPADE was more efficient than GSP.

Another method for finding sequential patterns is PrefixSpan, which operates
using Pattern Growth algorithms (Pei et al., 2004). The algorithm avoids
repeated scanning of the database for pattern growth, by recursively projecting a
sequence database onto smaller partitioned pattern related datasets. PrefixSpan
is likely to be slightly more efficient than cSPADE, when analysing long patterns
(Verma & Mehta, 2014). The current study, however, used cSPADE to mine
sequential patterns. cSPADE is better maintained and documented in python
and R and provides better control over constraints, as mentioned earlier. Control
over constraints is useful for monitoring the amount and length of sequences
(Zaki, 2000).

The cSPADE algorithm has been used in many studies (Aseervatham &
Osmani, 2005; De Smedt et al., 2019; Ibrahim & Shafiq, 2019; Wang et al.,
2018; Julea et al., 2008). The most common implication of cSPADE is pattern
recognition and pattern comparison between groups (Aseervatham & Osmani,
2005; Exarchos et al., 2008; Liu et al., 2017; Wang et al., 2018). The cSPADE
method has also been used for a type of prediction, where the next item in
a sequence is predicted. This is demonstrated by S. Lee et al. (2016), who
predicted the next place a mobile phone user was going to be, based on their
previous movements during a certain time period. Other studies have predicted
the next prescribed medications (A. P. Wright et al., 2015)or the movement of
taxis (Ibrahim & Shafiq, 2019). cSPADE has also been used to predict features
not included in the sequences (Deeva et al., 2017; Smedley et al., 2018). It has,
however, never been used to predict stress.

Alibasa et al. (2019) suggested that such a use of sequential pattern mining
algorithms could be applied to app usage patterns, for a more accurate stress
prediction. Consequently, the present study uses sequential patterns to create
an SPM model and compare the results to a non-sequential BoA model. Both
of these models use app usage patterns differently. This could improve stress
detection and prediction, as well as provide new insights into the importance
of sequentially ordered patterns in phone usage data for the prediction of daily
stress levels.

As mentioned earlier, consistent perceived stress can cause multiple health
problems (AbuAlRub, 2004; Majeno et al., 2018). The stress prediction methods
used in this study could be employed to monitor stress for health organisations
or provide personal warnings to users (Matic et al., 2014; Grünerbl et al., 2014).
Different stress relieving methods could be suggested in these warnings.
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3 Method

In this study, three different datasets were used. The first dataset contained the
app usage of all participants. The second dataset contained all answers to a
survey the participants had to fill in multiple times per day during the study,
which is similar to the method used by Stütz et al. (2015). In the third dataset,
the apps and their categories were reported. A full description of the datasets is
provided in the experimental setup.

The method, used to build and evaluate the BoA and SPM models from
these datasets, was divided into three different phases. The first phase was
the cleaning and pre-processing phase, in which the datasets were cleaned and
prepared for the feature extraction phase. In the feature extraction phase, two
different sets of features were extracted. The model creation and evaluation
phase was the third phase, where the models were finalised and evaluated. The
methodology used in the different phases are described below. The procedure
for performing the steps in the different phases is described in the experimental
setup section.

3.1 Cleaning and pre-processing phase

The first phase consisted of merging and cleaning the datasets. After that, the
apps were divided into categories. Ideally, every application would be used as a
feature or in sequences under their own name. This would allow researchers to
analyse the influence of every app. However, app usage is likely to be distributed
according to Zipf’s law (Zipf, 1932; Adamic & Huberman, 2002). This law
describes how the most frequent word is used twice as much as the second most
used word, three times as much as the third most used word, and so on. App
usage in the dataset is approximately distributed according to Zipf’s law, as is
illustrated in figure 2 in the experimental setup. This meant that more than half
of the used apps did not record a frequency rate higher than 50. It was likely
that the apps would not be used by a classifier or for a split in a decision tree.
To prevent information loss, the apps were bundled into categories.

The most used apps had a big impact on their categories. With the intention
of attributing the information these apps provide to the apps themselves, these
apps were not divided into an existing category. Instead, each of these apps
was assigned to their own category. This could also spread out the information
over the categories. A detailed description of this process can be found in the
experimental setup.

3.2 Feature extraction phase

The second phase focused on feature extraction. Features for the BoA model
were based on a bag-of-words representation of text data (Zhang et al., 2010). As
mentioned earlier, it quantified the app occurrence during a certain time period,
creating a sparse matrix. The features for the SPM model were based on the
sequential representation of data (Zaki, 2000). Five steps were followed in the
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mining process of the cSPADE algorithm (Agrawal & Srikant, 1995; Zaki, 2001).
In the first step, the dataset is sorted into baskets, based on user-id and response
date. The second step is the L-itemset step. In this step, all possible itemsets L
are created. The itemsets contained all the items available in the baskets. The
maximum length of itemsets is arbitrary. The itemsets are then mapped to create
a single entity for each itemset. In the third step, all baskets are transformed.
The items in the baskets are replaced by their respective mapped itemsets. This
creates baskets of mapped itemsets, based on user-id and response date.

Sequences in these mapped frequent itemsets are then mined in step four,
using the apriori algorithm. This algorithm mines a list of all possible itemsets
that satisfy an arbitrary support threshold. Support is defined as the number of
baskets an itemset appears in, divided by the total amount of baskets. In the
fifth step, the maximal length of each sequence is found. Step four is repeated,
adding a new itemset to a sequence every time. This is done, until no new
sequences satisfy the support threshold. Every itemset that can be added to a
sequence provides it with more specific information (Pei et al., 2004; Zaki, 2001).

The features for both models were based on the frequency of daily app
usage patterns per user. This was done to ignore sudden short feelings of stress,
which are not necessarily harmful (Quick et al., 1987; Bakker et al., 2011). As
mentioned before, stress during longer periods of time (e.g. day) can create
mental and physical health problems (Bakker et al., 2011; Majeno et al., 2018).

Stress itself was measured by the following survey statement: ‘Since taking
the last survey, I felt stressed (gestresst)’. Participants were asked to react, by
choosing one answer from a six-point Likert-type item, ranging from zero (‘not
at all’) to five (‘extremely’). This was similar to the method used by Ferdous et
al. (2015). To answer the third subquestion, stress levels were divided into two
categories: (practically) no stress (0-1) and stress (2-5). These categories are
based on Alibasa et al. (2019), who split mood into positive or negative. They
suggested that this model could be used for stress prediction as well. This could
also be useful for the early detection of chronic daily stress, which is important
for prevention of chronic stress (Bakker et al., 2011).

3.3 Modelling phase

In the third phase, the BoA and SPM features were used to create the eponymous
models. BoA and SPM models were constructed for each of the different research
questions. To predict stress, the models were fed to the XGBoost classifier, which
has won numerous Kaggle competitions (T. Chen & Guestrin, 2016). XGBoost
uses eXtreme Gradient Boosting on decision trees (Friedman, 2001; T. Chen &
He, 2015). It assigns a weight to every record in the dataset. The model runs
a decision tree to classify the records. The weights of the incorrectly classified
records are updated and a new decision tree is made, using the updated weights.
It repeats this process sequentially, until an arbitrary maximum number of trees
is reached. In the case of a classification problem, the class that is predicted
by most trees is linked to a record (Z. Chen et al., 2018). To put the results of
XGBoost into perspective, a Support Vector Machine (SVM) classifier was also
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used to predict stress (Suykens & Vandewalle, 1999).
Along with accuracy, recall was used to compare the performance of the

models. Recall displays the amount of correctly labelled instances for one label,
compared to the total amount of instances that should belong to that specific
label. Because stress prediction is important for (early) detection and treatment
of stress, identifying the correct stress level is more important than correctly
identifying the instances that do not belong to a certain stress level. More
specifically, it is important that people with stress are identified as such. It is
less of a problem when less stressed people are labelled as stressed.

Feature importance for both models was also calculated, to determine which
features has the most influence on the predictions. Features were compared by
their F scores, which is a count of the number of times the feature was used to
create a split in a decision tree (Z. Chen et al., 2018). The F score provides
an indication of the relative value of features, when creating the decision trees
in XGBoost. Comparing F scores between models is not done, since different
models need a different total number of splits.

4 Experimental Setup

The following section describes the procedure for performing the steps in the
different phases. The code can be found on GitHub (appendix A).

4.1 Datasets

As mentioned, three datasets were used to conduct this study. These datasets
were collected by a third party, via the Ethica application. The first dataset
contained all the phone usage information of 90 participants. Ethica tracked the
apps a participant used, for an average of 23 days (SD = 9.81) per participant.
The application also sent out a survey four times per day via a notification,
at relatively random intervals between 9 am and 10:30 pm. Participants were
required to complete a survey within two hours of it being sent or it would
expire. Participants were rewarded with credit for completing as many surveys
as possible. The complete survey and overview of apps per category could not
be shared, due to ownership rights. The answers to the survey were combined
in the second dataset. Participants filled in surveys for an average of 28 days
(SD = 9.60). Due to an error, the application kept sending out surveys after
the tracking process had finished. This data was excluded. The third dataset
contained the 1,086 used apps and the corresponding 46 categories.

4.2 Cleaning and pre-processing

4.2.1 Apps without category

To provide the tracking data with app categories, the categories dataset was
merged with the tracking dataset. This was done in R, using the sqldf package
(Grothendieck & Grothendieck, 2017). This package allows for SQL-type merging
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in R. The two datasets were merged on application name. Out of all 1,086 apps
in the dataset, 642 did not have a category. This translated to 95,464 out of
464,286 tracking records. Figure 1 shows that only a few apps accounted for
most of the tracking records without category. In fact, the top ten apps without
a category made up for roughly 85% of all tracking records without category.

Figure 1: Frequency of ten most used apps without a category. IKeyboard Blue Love
Heart theme has been shortened to IKeyboard, for fitting purposes.

These apps have been categorised manually, by only using existing categories.
This can be seen in the table in appendix C. It is important to mention that
Ethica is assigned to its own category. Ethica is the application used to collect
the data for this research. An interaction with the app was recorded when
participants filled in a survey. Because this could have had an influence on
stress levels, the Ethica data is not excluded. Besides that, this research aims at
predicting stress with patterns in daily app usage of participants. Ethica was
part of the daily app usage of the participants.

After these adjustments, 13,864 tracking records (2.98%) had no category.
The average amount of records of the remaining categoryless apps in the dataset
was approximately 22 records, which indicated that the remaining apps without
a category are not used often. These records were not used for feature creation.
Because the participants do not actively open or choose to open the apps
categorised as ‘Background Process’, these apps were also not used for feature
creation. This category does not belong in the app usage of participants, because
they did not use the app.

4.2.2 Hybrid app categorisation

As mentioned in the method section, app usage is distributed according to Zipf’s
Law. This can be seen in figure 2a. This figure only shows the 50 most frequent
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apps, due to formatting reasons. Only a few apps accounted for most of the
tracking records. This is also the case for the 46 app categories, as is depicted in
figure 2b.

(a)
(b)

Figure 2: Ordered frequency distribution of apps and app categories in the dataset.
Figure 2a displays the frequency counts of the 50 most used apps. Figure 2b shows the
frequency counts of all the categories.

Apps that were used more than 10,000 times were not divided into categories.
This group consisted of: Whatsapp Messenger, Instagram, Snapchat, Google
Chrome, Facebook, Spotify and Youtube. These seven apps are likely to provide
considerable information, due to the amount of times they have been used. This
would not be attributed to the apps if they are merged into a category. The
hybrid categorisation slightly improved the spread of records across categories,
as can be seen in the third graph in figure 3. Improvements are mainly visible
outside of the top three most frequently used hybrid categories. After this
procedure, 53 different categories were counted.

Figure 3: Ordered frequency distribution of hybrid app categories.

Next, some of the least used app categories were merged with comparable
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categories. The category ‘Job Search’ contained only one tracking record, which
was a LinkedIn Jobseeker. This category was added to the ‘Social Networking’
category, which is the same category as LinkedIn. The category ‘Messages’
contained only tracking records of the HTC messaging app, which was used
two times by the same participant. This category was added to the ‘Messaging’
category. This category contained apps that are similar to the HTC messaging
app, like the Android messaging app. The ‘Music & Audio’ category was added
to the larger ‘Music Audio’ category, because these categories contain the same
type of apps. After this process, a total of 50 hybrid categories were counted.

The survey dataset was only used to obtain stress levels per day. Since stress
was measured on a six-point Likert-type item from zero to five, every value above
five can be labeled as an outlier. The stress data contained five outliers (10, 22,
55, 68 and 70). These values were removed, since they were not within the range
of the six-point Likert-type item. As mentioned earlier, surveys were also sent
to the participants after the tracking process was completed. Surveys could also
expire after two hours. None of these surveys were used. After cleaning and
pre-processing, the combined dataset contained roughly 320,000 tracking records,
divided over 88 participants. A total of 1,713 unique user-id and response date
combinations were found.

4.3 Features

4.3.1 stress level

The BoA and SPM models are built to predict daily stress levels. The distribution
of these levels can be seen in table 1. To create the daily stress feature for both
models, the response time column in the survey dataset and the startTime
column in the tracking dataset were modified. Both of these columns contained
the date and time a participant had responded to a survey or started using
an app. The lubridate package in R was used to split the date and time into
two separate columns, titled ‘response date’ and ‘response time’ (Grolemund &
Wickham, 2011). The stress level of participants was summarised per user-id and
response date. These values were rounded to a whole number, to preserve the
0-5 Likert-type item classes. A separate stress dataset was created, containing
user-id, response date and daily stress level. To create the binarised stress
levels, a different dataset was created. Stress level 0 and 1 were labeled as 0
and the other labels were labeled as 1. The categorical stress levels seem to be
imbalanced. More specifically, stress levels 3, 4 and 5 occurred less often than
the other classes. The binarised stress levels were not heavily imbalanced. No
stress (level 0) was the most frequent level.

Because imbalance in the categorical stress levels could be a problem for
the model, the Adaptive Synthetic (ADASYN) sampling approach was used
to perform oversampling on the training data. The test set was not used to
perform oversampling. This was done to ensure no copies of the same point
could end up in both the training and the test set, which would make them less
independent of each other. ADASYN was proposed by He et al. (2008), who
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Table 1: Frequency distribution of binary and categorical stress levels in the final
dataset.

Stress levels

Types of stress level 0 level 1 level 2 level 3 level 4 level 5

Categorical stress 498 448 475 170 107 15
Binary stress 946 767

stated that ”the essential idea of ADASYN is to use a weighted distribution for
different minority class examples according to their level of difficulty in learning,
where more synthetic data is generated for minority class examples that are
harder to learn compared to those minority examples that are easier to learn”
(p. 1322). The imblearn package in python was used to perform ADASYN
oversampling (Lemâıtre et al., 2017). Figure 4 shows the distribution of the
ADASYN oversampled datasets, compared to the original dataset. The numbers
this table is based on, can be found in appendix B.

Figure 4: Stress level distribution of the original training set, compared to the
ADASYN oversampled training sets for both the SPM and the BoA models.

Because ADASYN used the features to determine prediction difficulty, the
SPM and BoA model have different numbers of synthetic samples. Judging
from the high number of synthetic samples created for stress level 5, ADASYN
predicted that this level was hard to learn. The amount of samples for the other
classes remained approximately the same. The results of the models trained
with the original dataset are compared to the results of the models trained with
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the dataset altered by ADASYN in the results section.

4.3.2 Bag-of-Apps model

The features for the BoA model were created using the cleaned tracking dataset.
The dataset was summarised using the dplyr package in R, creating a dataset
with app categories organised per user-id and response date, as one long vector.
A corpus of apps was created using the tm package in R (Feinerer, 2018). Using
this corpus, the frequency of every app category per user-id and response date
was calculated. This resulted in 50 features, which corresponds to the amount
of hybrid categories. After that, the number of occurrences per user-id and
response date were measured for each feature.

The 15 features with the highest frequency are shown in figure 5. This figure
shows that 10 of the top 15 most frequent features are social media or internet
related. Instant messaging is one of the most frequently used categories. Instant
messaging offers real-time text transmission, where users are able to see who is
online. This differs from the messaging category, which contains apps that do not
facilitate real-time connection, but allow users to send text or items to unknown
or previously known people. The difference between phone optimisation and
phone tools is also important to explain. Phone tools are tools on your phone to
help you (calculator, flashlight, etc.), whereas phone optimisation apps optimise
phone usage or performance (cleaning apps, Parallel Space, etc.).

Figure 5: The 15 most frequent features in the dataset for the BoA model.

4.3.3 Sequential Pattern Mining model

The SPM model also used the cleaned tracking dataset to summarise the app
categories per user-id and response date. The arulesSequences package provided
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the C++ implementation of cSPADE for R (Buchta et al., 2007, 2019). The
types and columns of the dataset were slightly modified or renamed, to match
the requirements of the cSPADE function. The dataset was then transformed to
the basket type, also provided by the arulesSequences package. The transformed
dataset was fed to cSPADE. This algorithm used a support hyperparameter,
which allowed users to select a certain support threshold, and the maxlength
hyperparameter, which took an arbitrary number as the maximum length of a
sequence. The sequences found by cSPADE were transformed to a dataframe,
which allowed for easier manipulation. The dataframe was then transposed,
creating a column for every sequence. The columns user-id, response date and
app categories per day were added to the dataframe, to allow for frequency per
user-id and day to be measured. The frequencies were calculated, partially using
the numpy and the re package in Python (Friedl, 2006; Oliphant, 2006).

The final number of sequences, i.e. features, depended heavily on the hyper-
parameter settings of the cSPADE algorithm. Optimal features were essential
for the final model, which is why different hyperparameter settings have been
analysed. Due to the computational expensiveness of the algorithm, support
could not be lower than 0.6 and the sequences could not be longer than 6. If no
boundaries were set, too many sequences were found. This caused computing
problems, when counting the frequencies of sequences per unique user-id and
response day combination. The maximum lengths 4, 5 and 6 were tested, together
with the support rates 0.6, 0.7, 0.8 and 0.9. The effect of different feature sets
can only be properly measured when the feature sets are used for prediction.
Therefore, the different feature sets were compared on their stress prediction
accuracy, using the training set. Accuracy is not the only evaluation method
used to evaluate models in this research, but it is used here because of its simple
interpretation when comparing models.

The outcomes of the hyperparameter analysis can be seen in the results
section, visualised in figure 7. The highest accuracy was achieved using a
maximum sequence length of 6 and a support rate of 0.8. These parameter
settings were used to create the SPM model. A total of 8,552 patterns were
found and used as features. The 15 most frequent features are shown in figure
6. Due to fitting reasons, Whatsapp Messenger has been shortened to W-app.
Noteworthy is the presence of Whatsapp Messenger in 14 of the 15 most frequent
features, as well as the sequences that only exist of Whatsapp Messenger uses.

4.4 Model creation and evaluation

After the final feature set was chosen for the SPM model, the stress levels were
added to the corresponding dates, using user-id and response date to merge the
datasets. A dataset was created for both categorical and binarised stress levels.
After the final datasets were created, the user-id and response date columns were
removed. The datasets were split into a training set, which contained 70% of
the data, and test set, which contained 30% of the data. This was done using
python’s sklearn package (Pedregosa et al., 2011). XGBoost classifier was used,
by implementing the XGBoost package in python (T. Chen & Guestrin, 2016).
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Figure 6: The 15 most frequent features in the dataset for the SPM model. Whatsapp
Messenger has been shortened to W-app and Phone Optimisation to Phone Opt, for
to fitting purposes.

To put the XGBoost results into perspective, an SVM classifier has also been
trained, using the previously mentioned sklearn package.

Parameter tuning was done, by using the Grid Search method from the
sklearn package. Two parameters of XGBoost were tuned; depth of each decision
tree (max depth = 2, 4 or 6) and the number of decision trees (n estimators = 50,
100 , 200). Two parameters of the SVM classifier were tuned. These parameters
were the penalty parameter of the error term (C = 1, 10, 100 or 1,000) and the
different kernels (kernel = linear, poly or rbf). The optimal settings for these
hyperparameters are mentioned in the results section.

The final models were tested, using the test set. The results of the BoA and
SPM models were compared on their accuracy and their respective confusion
matrices, as well as the recall score. A baseline was set for the accuracy and
recall scores, using the majority baseline model. This model only predicts the
majority class, which is stress level 0 for both the categorised and the binarised
stress levels. The scores of the BoA and SPM models are compared to this
baseline in the results section. Finally, feature importance for both models was
calculated to determine which features were most important for stress prediction.

5 Results

First, the results of the cSPADE hyperparameter analysis are presented. These
results can be seen in figure 7. The highest accuracies for the SVM and XGBoost
algorithm were 31.86% and 32.70%, respectively. The overall difference between
SVM and XGboost classifiers was only a few percent on every score. The accuracy
scores for all maximum lengths using 0.9 support were the same. This is due to
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the fact that no extra patterns were found with different support and maxlength
settings. The highest accuracy on the training set was achieved, using the 0.8
support and 6 maxlength settings. These settings were used to create the final
feature set for the SPM model.

(a) (b)

Figure 7: Accuracy results of different feature sets on the training set, generated by
different cSPADE parameter settings. For both the SVM (7a) and the XGBoost (7b
classifiers, a support rate of 0.8 with a maximum sequence length of 6 resulted in the
highest accuracy.

In this paragraph, the categorical stress prediction results of the BoA and
SPM model are presented. The results are listed in table 2. The accuracy for the
majority baseline model is 29.07%, which is the relative frequency of the most
frequent stress level (level 0), compared to the total amount of stress records.
The recall for the majority baseline model is 16.67%, since level 0 has a recall of
one and all other five levels have a recall of zero. Parameter tuning, using the
Grid Search method, showed C = 10 and kernel = rbf as the optimal settings for
the SVM. The XGBoost classifier scored the highest accuracy, using max depth
= 2 and n estimators = 100. All models scored above the accuracy and recall
baseline, although the SPM model was only slightly better. The BoA model,
using XGBoost classifier, scored the highest accuracy (39.96%) and the highest
recall (27.68%) on the test set. This suggests that the sequential patterns might
not provide more information for stress prediction with phone usage data.

Table 2: Performance of the BoA and SPM models, using the SVM and XGBoost
classifiers. Accuracy has been shortened to acc., for fitting purposes. The highest
accuracy and recall scores on the test set for both models are depicted in bold font.
Baselines for accuracy and recall were 29.07% and 16.67%, respectively.

SVM classifier XGBoost classifier

train acc. test acc. test recall train acc. test acc. test recall

BoA model 39.41 39.18 25.27 39.68 39.96 27.68
SPM model 31.86 31.51 18.29 32.70 31.71 18.77
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To add context to these scores, normalised confusion matrices were made for
the XGBoost predictions of both models. These matrices are shown in figure 8.
It seems that the BoA model is better at predicting stress level 1 and 2, while
both models are approximately equally bad at predicting stress 3, 4 and 5. The
BoA model seemed to have a strong tendency towards stress level 2, while the
SPM model classifies most records as stress level 0. This could be explained
by the fact that these stress levels are the most frequent stress levels, as was
reported in figure 1 in the experimental setup section. This figure also showed
that the classes are imbalanced, which could provide an explanation for the low
scores on the less frequent stress levels.

(a)

(b)

Figure 8: Normalised Confusion matrices of the XGBoost results on the test set. The
results of the BoA model are depicted in figure 8a. The result of the SPM model are
depicted in figure 8b. As can be seen, both models failed to predict stress level 3, 4
and 5.
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To counter class imbalance, ADASYN was used to perform oversampling on
the training data. The following paragraph describes the results of the ADASYN
oversampling method and compares the results to the models trained with the
original dataset. The accuracy and recall scores are listed in table 3. Because the
test set was not changed by ADASYN, the baseline remains 29.07% for accuracy
and 16.67% for recall. The BoA model, using the XGBoost classifier, scored the
highest test accuracy (40.16%) and recall (30.55%). Both SPM results seem to
indicate overfitting. The SPM model, using the SVM classifier, scored a lower
accuracy score than the baseline (25.68%). The SPM model using the XGBoost
classifier scored much better on the training set (43.50%) than on the test set
(32.88%). Except for the SPM model with the SVM classifier, it seems that the
addition of ADASYN oversampling only slightly increased accuracy and recall
scores. This could be due to the fact that the test set is generated from the
original dataset, which contained only a few level 5 records. This can be seen in
table 1 in the experimental setup section.

Table 3: Performance of the BoA and SPM models with ADASYN oversampled
training sets, using the SVM and XGBoost classifiers. Accuracy has been shortened to
acc., for fitting purposes. The highest accuracy and recall scores on the test set for
both models are depicted in bold font. Baselines for accuracy and recall were 29.07%
and 16.67%, respectively.

SVM classifier XGBoost classifier

train acc. test acc. test recall train acc. test acc. test recall

BoA model 42.52 38.99 27.56 43.15 40.16 30.55
SPM model 31.20 25.68 21.07 43.50 32.88 23.54

For further analysis of the results, normalised confusion matrices were made
for the XGBoost results of both models. These can be found in figure 9. The
BoA model seems to be better at predicting stress levels 0, 2 and 5, compared
to the SPM model. This contradicts expectations of prior research (Farrahi &
Gatica-Perez, 2014; Yan et al., 2012). Compared to the results with the original
dataset, the ADASYN trained SPM model is also able to better predict stress
level 1 and 5. The prior tendency towards level 0 remained. The ADASYN
trained BoA model is better than the BoA model trained on the original dataset,
mainly because it was better at predicting stress level 5. This did not provide a
high boost in test accuracy, since stress level 5 appears only scarcely in the test
set. The BoA model also kept its prior tendency towards stress level 2.
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(a)

(b)

Figure 9: Normalised Confusion matrices of the XGBoost results on the test set. The
results of the BoA model are depicted in figure 9a. The result of the SPM model are
depicted in figure 9b.

In this paragraph, the influence of different features on the BoA and SPM
models is presented. The most important features of the BoA and SPM models,
trained by the XGBoost classifier with the ADASYN training set, are compared.
Reason for that is the higher score these models obtained, compared to the models
trained with the original training set. The 15 most important features for the
SPM model, based on F score, can be seen in appendix D. The sequence messaging
- Whatsapp Messenger was the most important sequence for prediction in the
SPM model. Whatsapp Messenger appears 14 times in the 15 most important
sequences. Furthermore, almost all apps shown for the SPM model provide some
form of connection with the outside world. Only phone tools, tools and Ethica
do not provide social media services or a way to connect with people.
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The same pattern can be seen in the most important features for the BoA
model (appendix E). Only Ethica and phone tools do not provide some form of
communication. Instant messaging category was the most important feature. It
is interesting to see that the importance of Ethica, the app used to obtain the
data for this research, has such an impact on the stress prediction in the BoA
models. To a lesser degree, Ethica also had an impact on the prediction of the
SPM model, appearing in 2 of the 15 most important sequences.

In this paragraph, the prediction results of binarised stress levels are presented.
The majority baseline model scored an accuracy of 55.22% and a recall of 50.0%.
For both the BoA and the SPM model, the results are shown in table 4. All
models score above the baseline. The highest accuracy (69.79%) and recall
(69.65%) scores were recorded by the BoA model, using the XGBoost classifier.
Surprisingly, the accuracy test scores (SVM: 65.11%, XGB: 69.79%) of the BoA
model were higher than the training scores (SVM: 62.23%, XGB: 68.32%) for
the model. This could be coincidental, since the difference is modest. Another
explanation could be that the test set contains more distinguishable cases,
since both classifiers appear to underfit the BoA model. The highest score
percentagewise, compared to the baseline, belonged to the BoA model with the
XGBoost classifier, with a score of 14.57% above the accuracy baseline. Overall,
the standard deviations of the binary stress prediction models were only slightly
lower than the standard deviations of the models that predicted categorical stress.
The BoA model scored higher on accuracy and recall with both classifiers, which
seems to strengthen the previously mentioned suggestion that the sequential
patterns might not provide more information than frequency patterns for stress
prediction with phone usage data.

Table 4: Binary stress level performance of the BoA and SPM models, using the SVM
and XGBoost classifiers. Accuracy has been shortened to acc., for fitting purposes.
The highest accuracy and recall scores on the test set for both models is depicted in
bold font. Baselines for accuracy and recall were 55.22% and 50.0%, respectively.

SVM classifier XGBoost classifier

train acc. test acc. test recall train acc. test acc. test recall

BoA model 62.23 65.11 65.01 68.32 69.79 69.65
SPM model 59.41 56.42 52.87 62.69 59.14 55.90

To further analyse the results, normalised confusion matrices have been
made. These are shown in figure 10. The matrices show that the difference in
recall and accuracy scores is mainly due to the inability of the SPM model to
correctly predict the presence of stress (stress level 1). The BoA model is able to
somewhat accurately predict the presence of stress (59%), which was important
for detection and treatment.
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(a)

(b)

Figure 10: Normalised Confusion matrices of the XGBoost results on the test set.
The results of the BoA model are depicted in figure 10a. The result of the SPM model
are depicted in figure 10b.

The following section presents the most important features of the BoA and
SPM model, when using the XGBoost classifier to predict binary stress levels.
The 15 most important features of the SPM model are shown in appendix
F. Appendix G shows most important features of the BoA model. The most
important features for both models with binary stress levels differ from the
most important features for categorised stress prediction. For the SPM model,
Whatsapp Messenger and phone tools are still important. However, other apps
appear to contribute to the model as well. Dialer, Ethica, camera and tools are
new in the top four most important features. For the BoA model, Whatsapp
Messenger is no longer in the top 15 most important apps. Ethica also dropped
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in importance. The most consistent factor for the BoA model is the importance
of the phone tools category. Where social media and communication categories
dominated the BoA model trained with categorised stress levels, the BoA model
with binarised stress levels is also influenced by lifestyle app categories, like
personal finance, sports or phone personalisation.

6 Discussion

The aim of this study was to analyse the performance of two different models
on stress prediction; the non-sequential BoA and sequential SPM model. The
BoA model used daily frequency distributions of every app as features, whereas
the SPM model used daily frequency distributions of sequentially ordered app
usage patterns. The two models were compared to analyse the importance of
the sequential orders for stress prediction. Importance of the dimension of the
stress level has been tested using either binarised or categorical stress levels.
The prediction performance of both settings was compared in this study. All
suggestions for future research are combined in the eponymous subsection.

6.1 Hyperparameter testing cSPADE

The first results showed the outcomes of hyperparameter testing for the cSPADE
algorithm on the training set. Optimal results for both the XGBoost and SVM
classifier were found, using a support rate of 0.8 and a maximum sequence length
of 6. Although these were the optimal settings, the accuracy scores did not
differ greatly between settings. This could have been influenced by the fact
that this study was only able to test a few hyperparameter settings, due to the
computational expensiveness of the algorithm.

Previous studies did not set a maximum sequence length and used a lower
support rate (Ibrahim & Shafiq, 2019; Smedley et al., 2018; A. P. Wright et al.,
2015). A threshold was set in the present study, due to the computationally
exhaustive algorithm. The fact that a maximum sequence length of six scored
the highest accuracy is in line with Pei et al. (2004) and Zaki (2001). They
suggested that a sequence gains more specific information for every item added
to said sequence, provided that the support threshold is still met.

6.2 Categorical stress prediction

The BoA and SPM model were able to predict daily categorical stress levels. Both
models outperformed the baseline. The BoA model recorded a high accuracy
and recall, mainly due to the fact that the BoA model was better at predicting
stress level 1 and 2. Both models were especially bad at predicting stress levels
3, 4 and 5. This could be due to class imbalance in the data.

To test this, the ADASYN oversampling method was used on the training
set. The results showed that this only slightly improved accuracy and recall,
compared to the models trained with the original data. After further analysis,

23



it became clear that the slight increase was mainly due to increased prediction
performance on stress level 5. Although this seems positive, the result could be
marginalised by the fact that the test set only contained six stress level 5 records.
This could mean that sequential and non-sequential patterns are important for
lower stress level prediction, but not for higher stress levels. However, this might
be influenced by the aforementioned unbalanced classes in the training and test
set, which could only partially be solved by the ADASYN oversampling method.

When comparing the models, it becomes clear that both the original and
ADASYN trained BoA model outperformed the SPM model. This is not in
line with prior research, which suggested that the sequential order of patterns
provides additional information on the data (Farrahi & Gatica-Perez, 2014;
Alibasa et al., 2019). This could mean that sequential patterns do not add as
much information as thought, when it comes to categorical stress prediction.
This could have been influenced by the fact that SPM was not fully used, due to
a lack of computing power. As mentioned earlier, maximum sequence length is
usually not limited and support rates are usually set lower than 0.8. Excluding
these limitations could lead to more sequences, providing more information.

The relatively good performance of the BoA model, compared to the baseline,
is in line with Do & Gatica-Perez (2010). The article presented the BoA model,
because it could unravel meaningful patterns in phone usage data. Ferdous et
al. (2015) showed that temporal app usage patterns are able to predict stress,
on a user-specific level. The results of the BoA model provide support for the
idea that the usage frequency of apps also contains information about daily
categorical stress levels. A combination of the temporal and BoA model could
be interesting. This is addressed in the suggestions for future research.

The results also displayed the most important patterns for both models, based
on feature importance. Messaging and social media categories are dominant in
both models. This adds to the conclusions made by Kushlev & Dunn (2015);
K. B. Wright et al. (2014), who concluded that social media and work related
apps, like email, could nurture constant feelings of stress. The findings in this
study suggest that they are not only able to nurture stress, but might also have
the ability to indicate the presence of stress. The Ethica app, used to obtain the
data, seems to have had a significant impact on the prediction of the BoA model
and a moderate impact on the prediction of the SPM model. It could be that
the participants mostly answered surveys, when they were particularly stressed
or relaxed. Another possibility could be that the apps might have influenced the
stress level of participants, as is discussed in the suggestions for future research.

Lastly, it is interesting to note that no sequences containing five or six apps
are in the top 15 most important features. This could be due to the way decision
trees work and how the F score is calculated. A feature gains a higher F score
when it is used for more splits in the decision trees. The more frequent features
are in the dataset, the more likely it is they are used in multiple splits. As
mentioned earlier, longer sequences have a tendency to contain more specific
information (Pei et al., 2004; Zaki, 2001). One possibility is to focus on longer
sequences by setting a minimum sequence length, as is also discussed in the
suggestions for future research.
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6.3 Binary stress prediction

The prediction of binary stress levels showed similar results to the daily categorical
stress prediction. Again, the XGBoost classifier outperformed the SVM classifier
and the BoA model outperformed the SPM model. The BoA model, using
the XGBoost classifier, scored highest percentagewise compared to the baseline.
This shows that the non-sequential BoA representation contains information
about the distribution of stress levels. A BoA model could be used to detect
stress among phone users. This could contribute to the identification of a risk
group, which could result in better diffusion of anti-stress remedies, treatments
or solutions.

The binary stress prediction results also show that the BoA model outperforms
the SPM model. This could provide more evidence against claims about the
added value of sequential patterns, as described in the previous subsection. This
seems to indicate that app usage frequencies within a time frame offer more
information about stress than the order in which apps are used. The value of
sequential patterns for stress prediction seems questionable, although further
research should investigate different hyperparameter settings to prove this claim.

It is also important to mention that the XGBoost classifier outperformed
SVM classifier in all categorical and binary stress prediction problems. This in
line with T. Chen & Guestrin (2016). They mentioned how XGBoost has won,
and is winning, a great number of Kaggle competitions. Therefore, it has come
as no surprise that XGBoost also outperforms SVM on this problem.

Looking at the most important features for binary stress prediction, it becomes
clear that messaging and social media apps still have a significant impact on
both models. The impact of the Ethica app increased marginally for the binary
SPM model and dropped somewhat for the binary BoA model, compared to
the categorical models. These findings support the claims made in the previous
subsection, about the influence the data-collection app might have on the results.
Future research should recognise this, as is further discussed in the suggestions
for future research.

Another reoccurring result is the absence of sequences of length 5 or 6 in
the top 15 most important features of the SPM model. This strengthens the
claim made in the previous paragraph, about the exclusion of short sequences
to improve importance of longer sequences. This is favored, because longer
sequences are considered to contain more specific information than shorter
sequences, as mentioned earlier (Pei et al., 2004; Zaki, 2001).

6.4 Suggestions for future research

The main limitation of the present study was the unavailability of the computing
power necessary to analyse a wider variety of cSPADE hyperparameter settings.
Future research should focus on testing a bigger range of hyperparameters for
parameter optimisation. Most studies have used lower thresholds than the
present study (Alibasa et al., 2019; Deeva et al., 2017; Ibrahim & Shafiq, 2019;
A. P. Wright et al., 2015). Lower thresholds are likely to produce different results,
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because the feature set changes with every setting.
The present study showed that non-sequential app usage patterns can be

useful for binary stress prediction. As mentioned earlier, detecting the presence
of stress can be valuable for providing general stress remedies and treatments.
Ferdous et al. (2015) showed that temporal patterns can also be used for stress
prediction. Future research could combine the non-sequential BoA approach
with a temporal model. This could possibly lead to even better stress prediction
results. It is advised that such research uses the XGBoost classifier as (one of)
the classifier(s) to predict stress, because it outperformed the SVM classifier on
every classification problem.

Future research could also decide to focus on longer sequences, using an
arbitrary minimum sequence length. As mentioned earlier, these sequences are
likely to contain more specific information. The more frequent shorter patterns
dominated the classifiers. Setting a minimum sequence length negates this
dominance and could reduce the amount of noise the classifier has to deal with,
because less sequences are analysed. It could be especially useful for categorical
stress levels, because distinguishing between multiple categories proved to be
harder than distinguishing between two categories.

Finally, it is important that future research recognises the effect the data
collection app might have on the study. It might be the case that the current
way of measuring stress might not be as unconstrained as hoped. Although the
Ethica app was only moderately important for the most successful models, it did
appear in the top 15 most important features of every model. Because phone
usage data is used in numerous studies and is likely to be used in the future, it
might be interesting to further analyse the effect of the data collection app. The
results could be used to design a method, aimed at minimising the effect of the
app.
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7 Conclusion

Two methods for stress prediction were presented. The BoA method focused on
non-sequential frequencies of app categories, while the SPM method focused on
the frequencies of sequential patterns between these app categories. The BoA
method and SPM method both produced models that scored above the baseline.
The BoA model outperformed the SPM model in every tested scenario. The
best performing model was the BoA model for binary stress prediction, using
the XGBoost classifier. This could indicate that app usage patterns are able to
predict stress, especially on a binary level. The results also indicate that the
added information that sequential patterns provide might not be able to produce
better stress prediction results. Further research is needed to support this claim.
An interesting extension of this study could be the exclusion of short sequences
for the SPM model, or creating a combination of temporal and non-sequential
app usage patterns to predict stress.
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Stütz, T., Kowar, T., Kager, M., Tiefengrabner, M., Stuppner, M., Blechert, J.,
. . . Ginzinger, S. (2015). Smartphone based stress prediction. In International
conference on user modeling, adaptation, and personalization (pp. 240–251).

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine
classifiers. Neural processing letters, 9 (3), 293–300.
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Appendices

A

The following link leads to the GitHub repository, containing the code used to
conduct this research:

Thesis code repository Aaron Wijnker
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B

Table 5: Stress level distribution of the original training set, compared to the ADASYN
oversampled training sets for both the SPM and the BoA models.

Stress level Original training set
ADASYN
training set SPM

ADASYN
training set BoA

0 348 355 348
1 310 313 315
2 334 335 334
3 125 116 121
4 73 71 76
5 9 352 351
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C

Table 6: Categorisation of the ten most used apps without a category. The ’source’
column refers to a web page, where the app is explained and categorised by the
developers. IKeyboard Blue Love Heart Theme has been shortened to IKeyboard, for
fitting purposes.

App Category Source

Android SystemUI Background Process Google Source (n.d.)
Ethica Ethica Ethica Data (2019)
Parallel Space Phone Optimisation LBE Tech (2019)
Tilburg Osiris Education CACI bv (2019)

Napster Streaming Services
Rhapsody International, Inc
(2019)

Nexus Launcher Phone Personalisation xda-developers (2016)
Deliveroo Rider Business Management Deliveroo (2019)
Mo PTT Social Networking Mottx Co., Ltd. (2019)
Asterix and Friends Game Multiplayer APKsHub (2019)

IKeyboard Phone Personalisation
Theme Design Apps for
Android (2019)
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D

Table 7: Top 15 most important features of the XGBoost BoA model, trained with
the ADASYN oversampled training set. The features are ranked on F score. Whatsapp
Messenger has been shortened to Whatsapp and Phone Optimisation has been shortened
to Phone Opt, for fitting purposes.

Features F score

Messaging, Whatsapp 47
Phone Tools, Phone Tools 42
Whatsapp, Youtube 35
Whatsapp, Whatsapp, Whatsapp 34
Whatsapp, Whatsapp 30
Youtube, Youtube 29
Ethica, Whatsapp 28
Whatsapp, Ethica 28
Phone Opt, Youtube 26
Phone Tools, Whatsapp 26
Google Chrome, Phone Tools 25
Phone Opt, Email 25
Phone Opt, Whatsapp, Whatsapp, Whatsapp 24
Youtube, Whatsapp 24
Email, Phone Tools 24
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E

Table 8: Top 15 most important features of the XGBoost BoA model, trained with
the ADASYN oversampled training set. The features are ranked on F score.

features F score

Instant Messaging 104
Ethica 102
Phone Tools 99
Instagram 94
Whatsapp Messenger 77
Facebook 73
Google Chrome 65
News 65
Dialer 63
Streaming Services 61
Youtube 51
Snapchat 51
Email 50
Dating 45
Maps 44
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F

Table 9: Top 15 most important features of the XGBoost SPM model, when predicting
binary stress levels. The features are ranked on F score. Whatsapp Messenger has
been shortened to Whatsapp and Phone Optimisation has been shortened to Phone
Opt, for fitting purposes.

features F score

Camera, Phone Tools, Dialer 10
Whatsapp, Dialer 10
Phone Opt, Whatsapp, Phone Tools, Ethica 8
Internet Browser, Ethica 7
Email, Phone Tools 7
Whatsapp, Whatsapp 7
Phone Opt, Whatsapp 7
Phone Opt, Phone Opt, Phone Opt, Ethica 6
Whatsapp, Whatsapp, Whatsapp 6
Whatsapp, Dialer, Whatsapp, Phone Tools 6
Whatsapp, Whatsapp, Youtube 6
Phone Tools, Whatsapp 6
Youtube, Whatsapp, Whatsapp 5
Phone Opt, Camera, Youtube 5
Phone Tools, Phone Tools, Camera, Whatsapp 5
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G

Table 10: Top 15 most important features of the XGBoost BoA model, when predicting
binary stress levels. The features are ranked on F score.

features F score

Social Networking 25
Phone Tools 21
News 21
Google Chrome 15
Personal Finance 14
Internet Browser 13
Dialer 12
Phone Personalisation 12
Weather 11
Sports 11
Instagram 11
Snapchat 9
Streaming Services 9
Ethica 8
Education 7
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