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Mobile phone technologies have developed rapidly over the past few years. To be able to facilitate 

these continuously developing technologies, smartphones demand increasingly more battery 

capacity. Improving smartphone energy efficiency is an ongoing challenge and is being addressed 

from numerous perspectives. On another note, there is increasing interest in understanding how 

smartphone users use their phone. This work is an initial attempt to determine how smartphone 

users adapt their phone usage behavior to the battery level of their phone. Answers to this matter 

might prove to be relevant for research regarding smartphone energy efficiency as well as the 

understanding of smartphone usage itself. Six features have been evaluated which all represented a 

concept of phone usage behavior and quantified to what extent a smartphone user adapts the 

respective concept of phone usage behavior given two intervals of battery level. Results suggest 

that distinct patterns of change in phone usage behavior cannot be accurately captured using 

global intervals of battery level. Instead, they suggest that we should look closely to how 

smartphone users adapt their phone usage behavior to a more continuous scale of battery level.     
 

1. Introduction  

Mobile phone technologies have developed rapidly over the past few years. State-of-the-

art hardware boosts the computational power of mobile phones and enables the 

development of more sophisticated mobile applications. Simultaneously, wireless 

technologies continue to develop and the imminent introduction of 5G networks promises 

to push the capabilities of smartphones even further. To be able to facilitate these 

continuously developing technologies, smartphones demand increasingly more battery 

capacity. To date, extending the battery life of smartphones is an ongoing challenge that 

is being addressed from various fields of research. 

Battery life is generally referred to as run time on a full battery charge. Research 

efforts which aim to extend battery life can be subdivided into two broad categories, 

namely the improvement of energy efficiency and the improvement of battery capacity. 

The latter concerns the development of the battery itself, for instance, the development of 

next generation Li-ion batteries (Deng, 2015). This category shall not be further discussed 

as it falls outside of the scope of this research. 

 The ongoing challenge of improving smartphone energy efficiency is being 

addressed form numerous perspectives. Recent work focused on understanding the 

interactions between batteries and applications (Guo, Wang & Che, 2017), battery level 

predicting (Li, Liu & Mei, 2018; Oliver & Keshav, 2011), energy modeling schemes 

(Yurur, Liu & Moreno, 2015; Ahmad et al., 2017), smartphone charging habits (Ferreira, 

Dey & Kostakos, 2011) and more. However, to my knowledge, little to no efforts have 

been made to understand how people adapt their smartphone usage behavior to the battery 

level of their phone. 

Knowledge of smartphone usage adaptation is interesting from a scientific point 

of view as it might serve as an additional dimension in research regarding the 

understanding of phone usage behavior in general. Moreover, this knowledge can 
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potentially be exploited by research fields concerned with the development of smart 

energy management systems (Datta, Bonnet and Nikaein, 2014; Draa, Niar, Tayeb, 

Grislin & Desertot, 2017) as it might encompass relevant information which can lead to 

battery savings. Development of such systems is interesting for mobile phone developers 

as battery life is an important feature that directly affects the popularity of smartphones 

(Kekolahti, Kikki, Hämmäinen & Riikonen, 2016). Additionally, increasing smartphone 

battery life could stimulate the increase in availability of smartphone log data as battery 

drain is one of the main concerns that withholds people from participating in such data 

collection efforts (Anjomshoa & Kantarci, 2018). 

 This project is an initial attempt to determine how smartphone users adapt their 

phone usage behavior to the battery level of their phone. The aim of this project is to 

ascertain whether smartphone users adapt their phone usage behavior to phone battery 

level in different ways. In addition, the project aims to assess whether smartphone users 

adapt their phone usage behavior gradually or more erratic across levels of phone battery. 

By extracting features from smartphone log data, this thesis intends to answer the 

following research questions:  

• To what extent can we distinct different patterns of phone usage adaptation to 

phone battery level by clustering smartphone users based on features that 

describe how smartphone users adapt their phone usage behavior to intervals of 

battery level?  

• Are the defined features and cluster solutions stable when we evaluate how 

smartphone users adapt their phone usage behavior considering different 

intervals of battery level? 

To be able to answer these questions, features have been engineered that describe how 

smartphone users adapt general notions of phone usage behavior given two intervals of 

battery level. Initially, feature values have been computed considering battery levels 1-50 

and 51-100 as intervals. The features quantify to what extent a participant exhibits less or 

more of the respective concepts of phone usage behavior at the higher interval of battery 

level (e.g., if the user uses applications for shorter or longer periods of time when phone 

battery level is 51 percent or higher, as compared to when phone battery level is 50 

percent or lower). The features have been clustered using the DBSCAN algorithm. The 

cluster results have been evaluated by means of plots and the density-based clustering 

validation metric (DBCV). 

 The top 10 cluster results in terms of the DBCV measure all consist of one 

cluster. With a minimum DBCV measure of 0.709, all evaluated cluster solutions are of 

considerable density. Results indicate that smartphone users do not exhibit clear distinct 

patterns of phone usage adaptation to battery level. Instead, they suggest that phone usage 

adaptation fluctuates more gradually between users. However, further analyses of the 

used features unveiled large differences in feature values when considering more 

narrowly defined intervals of battery level. In addition, the cluster solutions were found to 

be rather unstable when comparing them to cluster solutions that were established using 

features that have been computed over the more narrowly defined intervals of battery 

level. These results indicate that the approach using battery levels 1-50 and 51-100 as 

intervals is too broad, and that phone usage adaptation might be best captured by 

analyzing change in phone usage behavior given multiple, more narrowly defined 

intervals of battery level. 

 

 

2. Related Work 

Understanding how smartphone users adapt their phone usage behavior to the battery 

level of their phone has, to my knowledge, not been addressed by the literature. However, 
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it does overlap with and can be found relevant in two areas of research, namely the field 

of research concerning energy efficiency and the field of research concerning phone 

usage behavior in general. Both fields are closely intertwined given that phone usage 

behavior is often used as input in various works regarding battery efficiency. Important 

facets from both fields will be discussed in this section. 

 The increasing availability of smartphone log data facilitated researchers to gain 

a deeper and more accurate understanding of how smartphones are being used. 

Smartphone user diversity has gained a lot of attention and illustrates how smartphones 

are being used across various types of users. 

 One of these works analyzed how smartphone usage statistics differ across 

frequent and less frequent smartphone users (Guo, Wang & Chen, 2017). The authors 

classified participants as heavy, normal or lights smartphone users based on phone usage 

duration time. In this work, the 20% most frequent smartphone users were classified as 

heavy users and the 20% least frequent smartphone users represented the light class. 

Analysis unveiled vast differences in daily smartphone usage duration times between the 

heavy group (8.6 hours per day) and the light group (0.9 hours per day). 

 In a more comprehensive analysis, Falaki et al. (2010) found similar and 

additional differences in user diversity. Their work showed that average daily smartphone 

usage time varies from 0.5 to 8.3 hours. In addition, the amount of daily smartphone 

usage sessions (varying from 10 to 200) and session length (varying from 10 to 250 

seconds) differ greatly between users and were found to be uncorrelated. 

 Complementary to the more general notions of smartphone usage, studies also 

attempted to understand how users interact with the vast amount of available smartphone 

applications. Guo et al. (2017) found that applications used for communication and 

internet browsing accounted for approximately 70% of smartphone usage time. This 

finding is relatively consistent across other works (Brown, McGregor & McMillan, 2014; 

Falaki et al., 2010). Moreover, Guo et al. (2017) found application usage to be extremely 

diverse and yet very concise: their data set contained roughly 23,000 different 

applications of which the 200 most frequently used applications accounted for 82% of 

total smartphone usage time. Neither Guo et al. (2017) nor Falaki et al. (2010) found 

significant differences between the distributions of used application categories of heavy 

and light smartphone users. 

 More variation arises as we look at usage times of application categories. Falaki 

et al. (2010) found that application categories differ from each other in terms of mean 

usage times. In addition, they found that smartphone users distinct themselves from others 

by using similar applications for different amounts of time. Ferreira, Goncalves, 

Kostakos, Barkhuus and Dey (2014) studied application micro-usage, which they defined 

as “brief bursts of interaction with applications” (p. 91). Their work provides insight into 

the proportions in which applications are used for short and longer periods of time. 

Findings indicate that these proportions differ across application categories. 

 It is evident that smartphone usage behavior is extremely diverse. Various works 

have established differences in smartphone usage but fall short in explaining this 

diversity. Nevertheless, an understanding of smartphone usage behavior is of importance 

for research regarding smartphone battery usage as phone interaction (Datta et al., 2014) 

and application usage (Guo et al., 2017) considerably affect battery lifetime. 

 In addition to diversity in smartphone usage, diversity has also been found in 

how users interact with phone batteries. In an early work, Banerjee, Rahmati, Corner, 

Rollins and Zhong (2007) studied battery use and battery recharge behavior of laptop and 

mobile phone users. The authors argued that accurate knowledge of this matter can be 

exploited to develop more sophisticated energy management systems. Ferreira et al. 

(2011) conducted a similar kind of study focusing solely on charging behavior of 

smartphone users. The authors found that users tend to keep battery levels above the 30% 
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mark. Moreover, their results unveiled two types of charging behavior: arbitrarily 

charging batteries for short periods of time and charging batteries to maximum capacity. 

Oliver and Keshav (2011) identified users who charge smartphone batteries for multiple 

short periods of time to be the most excessive battery consumers. 

So far, we discussed how users interact with their smartphone and its battery. 

This information is closely linked to the task of predicting battery lifetime. In general, 

research concerning battery lifetime prediction aims to enable smartphone users to 

effectively plan phone activities by providing them with information regarding how long 

the battery will last. The task of predicting battery lifetime is inherently complex as it is 

affected by numerous variables such as hardware, software and phone usage itself (Li et 

al., 2018). 

Works attempted to predict battery lifetime from different perspectives. A 

relatively consistent factor in these works is the use of hardware status as predictors. 

Works distinguish themselves by using additional predictors such as smartphone usage 

patterns (Chantrapornhai & Nusawat, 2016; Kang, Seo & Hong, 2011), application usage 

(Kim, Chon, Jung, Kim & Cha, 2016) or a more comprehensive approach (Li et al., 

2018). 

In a simplified approach, Kim et al. (2016) proposed a framework which predicts 

battery lifetime assuming that smartphones constantly run the same application. Using the 

status of various hardware components, the framework is able to predict battery lifetime 

with roughly 93% accuracy. Trying to predict battery lifetime based on more natural 

phone usage behavior, Li et al. (2018) extracted and evaluated the predictive performance 

of features from the Sherlock data set (Mirsky, Shabtai, Rokach & Shapira, 2016). 

Ultimately, their model was able to predict battery lifetime with an average error of 

approximately 107 minutes. Li et al. (2018) found historic battery consumption rate to be 

the most useful predictors given the prediction problem. 

A variety of works have developed models that attempt to predict battery 

lifetime. Under simplifying assumptions, battery lifetime can be predicted with 

considerable accuracy, such as the work of Kim et al. (2016). However, accuracy tends to 

drop as works attempt to predict battery lifetime given more natural smartphone usage 

behavior (Li et al., 2018). It will be interesting to see if and how understanding of 

smartphone usage adaption to phone battery level will be able to enhance performance in 

such prediction tasks. 

An exciting product that relates to the discussed areas of research is the 

development of energy management systems that adapt their policies to the specifics of 

smartphone users. As early as in 2007, researchers emphasized the potential of these 

kinds of systems (Banerjee et al., 2007; Ferreira et al., 2011). Datta et al. (2014) proposed 

an architecture that constructs phone usage patterns by monitoring smartphone usage. 

Using the constructed patterns, it then generates and implements a user-specific power 

saving profile. Evaluations showed that the architecture results in larger battery saving 

compared to well-established applications such as Juice Defender. More recent work 

attempted to implement real-time power saving profiles by predicting which applications 

a user is likely to use next (Draa et al., 2017) and tried to incorporate battery lifetime 

demands of users (Draa, Niar, Grislin-Le Strugeon, Biglari-Abhari & Tayeb, 2019). 

An apparent conclusion is that smartphone usage is extremely diverse. The 

literature has established the diversity but falls short in explaining how it arises. The 

diverse behavior facilitates numerous types of analysis such as predicting battery lifetime. 

However, due to this diversity, we must be careful interpreting results as findings based 

on small sample sizes are likely to be prone to some kind of bias (Zhao et al., 2016) and 

are difficult to generalize (Church, Ferreira, Banovic & Lyons, 2015). 

This work is an initial attempt to understand if and how smartphone users adapt 

their phone usage behavior to the battery level of their phone. One of the steps in this 
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work is to find behavioral features which can be used to represent the concept of change 

in phone usage behavior. Doing so, it might provide valuable information which can be 

used to explain a portion of the large amount of diversity in smartphone usage. 

Additionally, this work tries to assess whether smartphone users show distinct 

patterns of change in phone usage behavior. Features capturing these patterns might prove 

to be very useful in tasks such as predicting battery lifetime as they encompass 

information regarding how the smartphone user is going to adapt his phone usage. For 

instance, features describing how a user is going to adapt phone usage behavior as battery 

level decreases might significantly interact with existing features and, as a result, 

substantially increase real-time battery lifetime prediction accuracy. In a similar sense, 

the same features might also provide more ground for energy management systems to 

interact with and anticipate on user behavior.  

 

3. Experimental Setup  

This section contains a detailed description of the used data set, the used features and the 

adopted methodology and used models. 
 

3.1 Data 

The analysis was conducted on an existing data set containing mobile phone log data 

(Hendrickson, Aalbers & Vanden Abeele, under review). The data has been collected 

from 124 participants over the course of four weeks. The data has been logged through an 

application which participants installed on their personal smartphone. Observations in the 

data set represent the use of a smartphone application and contain information regarding 

the context of its use. Every observation encompasses information regarding which 

application has been used, the start and end time of the usage event, the battery level at 

the start of the event, a session number and a user-id. Every participant has a unique user-

id. Smartphone usage sessions are considered to happen when multiple applications have 

been used consecutively. Therefore, observations representing consecutively used 

applications are given the same session number. 

 The unprocessed data set consists of 586,792 observations collected from 124 

participants. Data exploration unveiled some problems in the data which have been 

solved as follow: 

• In some cases, the same events have been recorded twice. All duplicate 

observations have been discarded. 

• All observations with a recorded battery level of zero have been discarded. 

Observations with zero battery level were also likely to be outliers in terms of 

usage duration. 

• Participants (4) have been removed as a result of corrupted session registrations. 

The respective participants were outliers in terms of session duration which was 

caused by an unexplainable large number of observations having similar session 

numbers. 

• Participants (2) with no registered observations below 40% battery level have 

been discarded. 

• Participants (11) who participated less than four days in the data collection effort 

have been discarded in an attempt to bolster the representativeness of the 

registered phone usage behavior. 

• Application usage events that lasted shorter than half a second or longer than one 

hour have not been considered in this study. A considerable amount of 

application usage events (32,194) lasted shorter than half a second. However, 
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with a mean duration of 0.15 seconds, these events have not been considered 

meaningful. A small number of observations lasted longer than one hour (283). 

With a mean duration value of 5,860.69 seconds, these observations have been 

considered as outliers.  

The cleaned data set consists of 513,799 observations collected from 104 participants. On 

average, participants participated 24.4 days in the data collection effort.  

The data set has been further explored to get insight into how battery level affects 

smartphone usage. Approximately 62.2% of all application usage events have taken place 

while the battery level was 50% or higher. This difference can be partially explained by 

the literature as Ferreira et al. (2011) found that users have the tendency to keep battery 

levels above the 30% mark. However, it might also imply that users simply interact less 

frequent with their phone at lower battery levels. 

Looking at how application usage events are distributed across battery levels, we 

find that a significant number of instances take place at 100% battery level (figure 1). 

This finding indicates that users keep their phones connected to a power source, even 

when the battery is fully charged. This is also supported by the work of Ferreira et al. 

(2011), who found that users overcharge phone batteries on a regular basis. 

 

 
Figure 1: Bar plot visualizing the amount of applications used at different intervals of battery level 

 

The mean application usage time across battery levels is visualized in figure 2. 

What is interesting is that, with a mean of 64.83 (SD = 192.82), users use applications for 

longer durations of time at battery levels below the 50% mark as compared to battery 

levels above the 50% mark (M = 60.13, SD = 180.14). A plausible explanation could be 

that smartphone users refrain from using applications for less urgent causes at lower 

battery levels. 

 

 
Figure 2: Line plot visualizing the mean application duration time at different values of battery level 

 

It comes to little surprise that the data set contains highly variable information. 

Table 1 presents daily phone usage statistics that have previously been described in the 

literature (Falaki et al., 2010; Guo et al., 2017). Using the same heuristic as Guo et al. 

(2017), participants have been classified as heavy, medium or light phone users based on 
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their daily phone usage time. The statistics show large differences between user types. On 

average, heavy users spend more than six times as much time interacting with their 

phones as compared to light users. This difference mainly results form the number of 

apps used (331.62 vs 71.01) as the difference in app usage duration (80.52 vs 53.59 

seconds) is relatively small. It appears that medium and light users use an approximately 

similar number of apps per phone usage session while heavy users tend to use more apps 

during sessions. 

 

 
Table 1: Descriptive statistics of daily phone usage. The top and bottom 20% of participants in terms of 

daily phone usage time have been classified as heavy and light users respectively. 

 

When grouping the data based on battery level intervals, we see that heavy users 

show more consistent smartphone usage behavior across battery level intervals (table 2). 

Meanwhile, medium and light users use tend to use their phones less at the lower interval 

of battery level. All user types use their phone in longer sessions and use apps for longer 

durations of time at the lower battery level interval. 

 

 
Table 2: Descriptive statistics of daily phone usage grouped by battery level interval. 

 

3.2 Features 

The goal of this project is to identify distinct types of change in phone usage behavior by 

clustering smartphone users based on features that describe how smartphone users adapt 

their phone usage behavior to intervals of battery level. Therefore, all considered features 

represent a concept of phone usage behavior and quantify the extent to which a user 

adapts the respective concept given different intervals of battery level. This project 

focusses on the more general notions of phone usage behavior as discussed in the 

literature (e.g., mean application usage duration) and how a user adapts this behavior 

given two intervals of battery level (e.g., the difference in mean application usage 

duration between interval x and y). 

 Feature values have been computed for every participant in the dataset. The 

battery level variable has initially been binned using battery levels 1-50 and 51-100 as 

intervals. The observations of participants have been grouped by the defined intervals of 

battery level. For every participant, mean values of the respective concepts of phone 

usage behavior have been computed over both groups of battery level interval (e.g., a 

participant’s mean application usage duration computed over observations belonging to 
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interval 1-50 and interval 51-100 respectively). The computed mean value over a 

participant’s observations belonging to the lower interval has been subtracted from the 

computed mean value over observations belonging to the higher interval. As a result, the 

features quantify to what extent a participant exhibits less or more of the respective 

concepts of phone usage behavior at the higher interval of battery level (e.g., if the user 

uses applications for shorter or longer periods of time when phone battery level is 51 

percent or higher). A total of 104 feature values have been computed for every feature. 

The features have been standardized to prevent the different magnitudes of 

feature values from influencing the cluster solutions. A robust scaler has been used to 

prevent outliers from biasing the scaling of values. The robust scaler subtracts the median 

value from feature values and scales the values using the 25th and 75th quantile. 

Standardization of feature values is solely done to prevent the different magnitudes of 

feature values from influencing the cluster solutions. Further sections of this report 

contain analyses of the original feature values. 

 Application usage duration. The application usage duration feature quantifies 

the difference in mean application usage time computed over battery level interval x and 

y. This feature indicates whether a user, on average, uses applications for longer or 

shorter periods of time at the higher interval of battery level. Figure 3 presents the 

distribution of feature values given the initial binning heuristic. With a mean feature value 

of -5.3 seconds (SD = 14.99), users tend to use applications for shorter periods of time at 

the higher interval of battery level.  

 

 
Figure 3: Distribution of the application usage duration feature values.  

 

 Number of apps used. The number of apps used feature quantifies the difference 

in the number of apps used computed over battery level interval x and y. This feature 

indicates whether a user uses less or more applications at the higher interval of battery 

level. On average, participants are likely to use more applications at the higher interval of 

battery level (M = 1,207.36, SD = 2,270.92). This might indicate that users are less likely 

to use applications at lower battery levels, or that users tend to keep their batteries 

charged at higher levels. Figure 4 presents the distribution of the number of apps used 

feature values. 
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Figure 4: Distribution of the number of apps used feature values. 

 Session duration. The session duration feature quantifies the difference in mean 

sessions duration time computed over battery level x and y. This feature indicates whether 

a user’s phone usage sessions are shorter or longer at the higher interval of battery level. 

On average, smartphone usage sessions last 38.19 seconds (SD = 81.87) shorter at the 

higher interval of battery level. Figure 5 presents the distribution of the session duration 

feature values. 

 

 
Figure 5: Distribution of the session duration feature values. 

 

 Number of sessions. The number of sessions feature quantifies the difference in 

the number of smartphone sessions computed over battery level x and y. This feature 

indicates whether a user has less or more smartphone usage sessions at the higher interval 

of battery level. The distribution of feature values is presented in figure 6. With a mean 

feature value of 451.58 (SD = 678.28), participants tend to initiate more smartphone 

usage session at the higher interval of battery level. 
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Figure 6: Distribution of the number of sessions feature values. 

 

 Apps per session. The apps per session feature quantifies the difference in mean 

number of applications used per sessions computed over interval x and y. This feature 

indicates whether a user, on average, uses less or more applications per session at the 

higher interval of battery level. Participants tend to use less applications per session at the 

higher interval of battery level (M = -0.31, SD = 1.26). Figure 7 presents the distribution 

of the apps per session feature values. 

 

 
Figure 7: Distribution of the apps per session feature values. 

 

 Silence period. The silence period feature quantifies the difference in mean 

silence duration computed over interval x and y. Silence periods are periods during which 

a phone has not been used, and last from the end of the most recent session until the start 

of a new session. This feature indicates whether a user, on average, has longer or shorter 

periods of silence at the higher interval of battery level. Silence periods lasting longer 

than six hours have been considered as periods during which the participants sleep and 

were not included when computing the feature values. On average, silence periods last 
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133.34 seconds (SD = 592.43) shorter at the higher interval of battery level, indicating 

that people use their smartphones less frequently at lower battery levels. Figure 8 presents 

the distribution of the silence period feature values. 

 

 
Figure 8: Distribution of the silence period feature values. 

 

3.3 Method / Models 

This project embodies an initial attempt at exploring how smartphone users adapt their 

phone usage behavior to the battery level of their phone. As formulated in the research 

questions, this research tries to evaluate to what extent distinct types of change in phone 

usage behavior can by derived by means of cluster analyses, and how stable the defined 

features and clustering solutions are when considering different intervals of battery level. 

 First, features have been created and capture the more general notions of phone 

usage behavior as discussed in the literature. The features have been combined into 

feature representations that attempt to conceptualize how smartphone users adapt their 

phone usage behavior to the battery level of their phone.  

 Second, the feature representations have been used to assess whether smartphone 

users show distinct types of change in phone usage behavior. The DBSCAN clustering 

algorithm has been used to account for small number of unique participants in the data set 

and to prevent noisy samples from seriously affecting the cluster results (Schubert, 

Sander, Ester, Kriegel & Xu, 2017). In addition, the density-based clustering algorithm is 

able to find clusters of arbitrary shapes, which can provide valuable information as they 

might indicate certain forms of change in smartphone usage behavior. The cluster 

solutions have been evaluated using the Density-Based Clustering Validation (DBCV) 

algorithm. DBCV is suited to assess density-based clustering models as it is able to 

evaluate globular as well as non-globular cluster solutions. The measure ranges from -1 to 

+1, where higher values imply better solutions (Moulavi, Jaskowiak, Campello, Zimek & 

Sander, 2014). Cluster solutions have been visualized to get a broad sense of how diverse 

or concise the different representations of change in phone usage behavior are given these 

global intervals. A total of 104 data points has been clustered. Cluster solutions have been 

established considering all possible feature representations. The DBSCAN clustering 

algorithm requires two hyperparameters, namely minPts, which quantifies the minimum 

amount of points required for a cluster to be formed, and epsilon, defining the maximum 

distance between points for them to be assigned to the same cluster (Schubert et al., 
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2017). According to Schubert et al. (2017), a minPts of four up to twice the number of 

dimensions suffices for most datasets, and epsilon should be set moderately small. In this 

project, minPts ranged from two up to twice the number of dimensions and epsilon was 

set to range for 0.1 up to the number of dimensions. The experiments have been 

conducted using the scikit-learn implementation of DBSCAN (Pedregosa et al., 2011).  

 Third, to gain a more gradual insight into how battery level affects phone usage 

behavior, multiple sets of features have been computed using different intervals of battery 

level. The initial cluster solutions have been established using features that have been 

computed using battery levels 1-50 and 51-100 as intervals. The solutions of this global 

approach might not hold when considering different, more narrow intervals of battery 

level. Different sets of features have been computed using the following pairings of 

battery level intervals: 0-20 & 20-40, 20-40 & 40-60, 40-60 & 60-80, 60-80 & 80-100. 

The stability of the features has been assessed by directly comparing the feature values of 

the sets of features. In addition, the newly computed sets of features have been clustered 

using the same feature representations and hyperparameters settings that have been used 

in the previous step. The cluster results have been compared to get insight in how stable 

the cluster solutions are across the different intervals of battery level. 

 

 

4. Results  

A clustering analysis has been conducted using the in section 3.2 defined features. The 

goal of the clustering analysis was to assess whether humans exhibit distinct types of 

phone usage adaptation to phone battery level and how different intervals of battery level 

affect this adaptation process.  

 Table 3 presents the top ten cluster results in terms of clustering quality 

according to the DBCV measure. With a minimum value of 0.709, all cluster results are 

of considerable quality. Every cluster solution consists of only one cluster. The results 

indicate that users do not show clear distinct types of smartphone usage adaptation as 

defined by the feature representations. 

 

 
Table 3: Top 10 cluster results. F1) App usage duration, F2) Number of apps used, F3) Session 

duration, F4) Number of sessions, F5) Apps per session, F6) Silence period. 

 

 Cluster results have been plotted to gain insight into how the different feature 

spaces look like. The most interesting feature spaces have been discussed in this section. 

The remaining plots can be found in the appendices. Every cluster result has been plotted 

twice, one plot visualizing the cluster labels and noise while the other plot visualizes the 

distribution of user classes. 
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 The feature representation of cluster result 1 is visualized in figure 9. There 

appears to be one dense area of cluster points surrounded by additional cluster points and 

two clear outliers. There is little to no indication suggesting the forming of additional 

clusters. Looking at the class distribution, there is no clear sign that user classes show 

distinct behavior in terms of the used features. 

 
Figure 9: Scatterplots of cluster result 1. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

 Cluster result 4 is visualized in figure 10. Cluster result 4 is approximately 

linearly shaped and consists of one dense area of cluster points surrounded by a few 

distant cluster points and noise. Similar to cluster result 1, there is no indication 

suggesting the forming of additional clusters. 

 
Figure 10: Scatterplots of cluster result 4. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

 Upon closer inspection of the used features in cluster result 4, we find what 

appears to be a linear relationship between the ‘Number of sessions’ and ‘Number of apps 

used’ feature (figure 11). This relation logically makes sense as users that use more apps 

are likely to use more sessions as well. 
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Figure 11: Scatterplots of cluster result 6. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

  

Figure 12 visualizes the feature space of cluster solution 8. Contrary to the other 

cluster solutions, this result is less dense and suggests the forming of a second cluster. 

However, the DBSCAN algorithm still considered this to be one cluster because all points 

lie relatively close to each other. The distribution of user classes implies that light users 

use a consistent amount of applications but show much more inconsistent behavior in 

terms of silence periods. 

 

 
Figure 12: Scatterplots of cluster result 8. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

  

The discussed cluster results are based on features that captured change in 

smartphone usage behavior using battery levels 1-50 and 51-100 as intervals. Table 4 

presents mean feature values computed over different intervals of battery level. We find 

that the used intervals (0-50, 51-100) capture the change in features 1 and 5 relatively 

well as the mean values are rather stable across the different intervals of battery level. 

However, features 2, 3, 4 and 6 clearly show a much more gradual increase or decrease 

when computed over different intervals. 
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Table 4: Average feature values computed over different intervals of battery level. F1) App usage 

duration, F2) Number of apps used, F3) Session duration, F4) Number of sessions, F5) Apps per session, 

F6) Silence period. 

 Using the same feature representations and hyperparameters settings, the top ten 

clustering solutions have been reevaluated using the different sets of feature values. Table 

5 presents the results. It indicates that, despite configurations being exactly similar, the 

cluster solutions are quite unstable across the different intervals of battery level. The 

DBCV measure resulted in nan values when all points have been flagged as noise. 

 

 
Table 5: Cluster results using the newly computed feature values. F1) App usage duration, F2) Number 

of apps used, F3) Session duration, F4) Number of sessions, F5) Apps per session, F6) Silence period. 

 

5. Discussion  

The goal of this study was to ascertain how smartphone users adapt their phone usage 

behavior to the battery level of their phone. The project attempted to evaluate to what 

extent distinct types of change in phone usage behavior can by derived by means of 

cluster analyses, and how stable the defined features and clustering solutions are when 

considering different intervals of battery level. 

 This study derived six features from smartphone log data which all represented a 

concept of phone usage behavior. All features represented a concept of phone usage 

behavior (e.g., mean application usage duration) and quantified to what extent a user 

adapts the respective concept of phone usage behavior given two intervals of battery level 

(e.g., the difference in mean application duration between interval x and y). The features 

have been combined into different feature representations that attempt to conceptualize 

how smartphone users adapt their phone usage behavior to the battery level of their 

phone. 

 Using the defined feature representations as input, the DBSCAN clustering 

algorithm was used to assess whether smartphone users show distinct patterns of phone 

usage adaptation to phone battery level. We found that the top 10 cluster solutions in 
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terms of the Density-Based Clustering Validation measure (DBCV) all consist of only 

one cluster and a small amount of noise. These results strongly indicate that smartphone 

users do not show distinct patterns of change in phone usage behavior as defined by the 

evaluated feature representations.  

With a minimum DBCV measure of 0.709, the established cluster solutions are 

of considerable quality. An important thing to keep in mind is that the DBCV measure, 

similar to measures like Silhouette, indicates how similar points are to their own cluster 

as compared to other clusters. However, given that all analyzed solutions only consist of 

one cluster, the DBCV measures indicated how similar points in the established clusters 

are compared to the points that were assigned as noise. It is therefore questionable how 

useful the metric is in this context and whether or not a density-based clustering algorithm 

is a meaningful method to analyze the data of interest. 

Visualizing the cluster solutions in feature space verified that the established 

clusters were of substantial density. The visualizations provided little to no indication that 

hinted the forming of additional clusters. Instead, they suggest that phone usage 

adaptation fluctuates more gradually between users. Additionally, the visualizations 

indicated that the ‘Number of sessions’ and ‘Number of apps used’ features are linearly 

related, suggesting that users who use more applications simultaneously initiate more 

smartphone sessions. This relation logically makes sense. 

 The cluster results strongly indicated that smartphone users do not show distinct 

patterns of change in phone usage behavior as defined by the evaluated feature 

representations. Instead, visualizations of the cluster solutions imply that users distinct 

themselves from others by marginally adapting more or less extreme to different features. 

However, the feature values have been computed using battery levels 1-50 and 51-100 as 

intervals. Further analysis of the used feature values suggested that these intervals are too 

broad and indicated that the cluster solutions do not accurately capture the natural flow of 

phone usage adaptation. By binning the battery variable in five equally sized intervals, 

new sets of feature values have been computed considering all pairs of neighboring 

intervals. By analyzing the mean feature values, it was found that four of the six features 

exponentially increase or decrease as battery level declines. This information has not been 

captured by the features that have been used for clustering. 

 Finally, the stability of the cluster solutions has been tested using the newly 

computed feature values. Using the same feature representations and hyperparameter 

settings that have been used with the top ten cluster solutions, we assessed how the 

quality of the cluster solutions changed. All new cluster solutions were of less quality 

than the established ones. These results suggest that phone usage adaptation is best to be 

captured using more narrowly defined intervals. A plausible explanation could be that 

smartphone users distinct themselves from others by adapting their phone usage behavior 

more or less aggressively at different intervals of battery level. However, we must keep in 

mind that the features are computed using less data as the amount of battery intervals 

increase. This drawback might have partially caused the decrease in cluster quality. 
 

6. Conclusion  

This study attempted to answer the following research questions: 

• To what extent can we distinct different patterns of phone usage adaptation to 

phone battery level by clustering smartphone users based on features that 

describe how smartphone users adapt their phone usage behavior to intervals of 

battery level?  

• Are the defined features and cluster solutions stable when we evaluate how 

smartphone users adapt their phone usage behavior considering different 

intervals of battery level? 
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 The cluster results indicated that smartphone users do not show distinct patterns 

of change in phone usage behavior. The analyzed cluster results all consist of only one 

cluster and a small amount of noise. The cluster results did not show strong indications 

hinting the forming of additional clusters. Instead, the they suggest that phone usage 

adaptation fluctuates more gradually between users. 

 However, the cluster results have been established using features that captured 

the change in phone usage behavior using battery levels 1-50 and 51-100 as intervals. 

Further analysis of the used features strongly indicated that this approach is too global: 

feature values increased or decreased exponentially as battery level decreases. These 

findings indicate that phone usage behavior is best captured using multiple intervals of 

battery level. 

 The stability of the cluster results has been tested using features computed over 

more narrow intervals of battery level. All new cluster solutions were of less quality than 

the established ones. These results further suggest that the approach using battery levels 

1-50 and 51-100 as intervals is too broad. A plausible explanation could be that 

smartphone users distinct themselves from others by adapting their phone usage behavior 

more or less aggressively at different intervals of battery level. 

 This work has several implications for related fields of research. For example, it 

found that the used concepts of phone usage behavior exponentially vary as battery level 

decreases which partially explains the high variability of phone usage in general. 

Moreover, the results strongly suggest that change in phone usage behavior as a function 

of battery level cannot be accurately captured on a global scale. Instead, we should look 

closely to how smartphone users adapt their phone usage behavior on a more continuous 

scale. This might prove to be very relevant for works that attempt to predict battery 

lifetime. 

 Future research could expand on this work by evaluating the concept of change 

in phone usage behavior as a function of battery level on a more continuous scale. This 

can be achieved through expansion of the used feature representations by computing 

additional sets of features using more narrowly defined intervals of battery level. Future 

work could also include more concepts of change in phone usage behavior such as 

application micro-usage (Ferreira et al., 2014) and the use of various types of 

applications.  
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Appendix A: Visualizations of cluster results  

 

Figure 13: Scatterplots of cluster result 3. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

 

 

Figure 14: Scatterplots of cluster result 5. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

 



Data Science & Society  2019 

 

 

Figure 15: Scatterplots of cluster result 7. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 

 

 

Figure 16: Scatterplots of cluster result 10. In the left plot, red dots indicate cluster labels and blue dots 

represent observations flagged as noise. In the right plot, colors represent the user types. Heavy, 

medium and light users are colored red, orange and yellow respectively. 
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