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Comparing collaborative filtering with
content based filtering on Steam games

J.A. Simonse

Abstract

With the already 30000 unique game titles that are available on the Steam platform, and
developers releasing more games every year, the average gamer might be overwhelmed by the
abundance of game titles. To make sure the users of the platform don’t get lost in the game store,
there are systems working on the background, that make sure the users only gets to see relevant
games. These systems are called recommender systems, and they try to recommend games to the
user, based on the users’ past interests. The two most popular methods for recommending items
to users, are the collaborative filtering method and the content based filtering method. This study
focuses on these two methods, and tries to determine which of the two methods provides the best
recommendations for the users of Steam. The data used for this study contained information
about the what games each user owned, how long each user played a game and the characteristics
of each game. First the collaborative model was constructed, which combines the individual
interests with the opinions of other users to predict recommendations. Then the content based
model was constructed, which focuses more on the contents and the characteristics of a game. The
results of this study showed that the collaborative filtering method was superior to the content
based method, which corresponds with the research that already has been conducted on this topic.
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1. Introduction

1.1 Context

As we spend more and more time on the internet, especially now during the pandemic,
the amount of information that is being gathered and stored on each person is growing
by the minute. One thing in particular we like to do on the internet, is shopping. The
e-commerce industry is still rapidly growing, and they use all this stored information,
by implementing recommender system. These systems can take the data on users and
their preferences as an input, and predict the potentially interesting items for an user.
This provides the user with a more personal shopping experience, and allows the e-
retailer to target his customers better.

One very lucrative branch of e-commerce is the gaming industry. Before the ex-
plosive growth of e-commerce, people used to buy PC games at actual physical game
stores. However, as we are shifting more towards online shopping, this also changed
for games. One platform in particular that played a vital role in this transition, was
Steam. Steam is an online platform that sells digital copies of games, which currently
offers more than 30000 unique game titles, and has over 95 million monthly active users
(Gough 2020).

With over 30000 unique titles and 95 million monthly users, Steam is a perfect
example of a large e-commerce business that can benefit from an effective recommender
system. Without any recommendations, a user may find it hard to decide on which
games he wants to buy, as there are 30000 to choose from (Bolding 2019). The abundance
of choice might be overwhelming to the user, and can lead to the user being indecisive.
Adding a recommender system to the platform offers a great solution to deal with this
issue.

In the context of recommender systems, there are two techniques that are widely
used, namely collaborative filtering and content based filtering (Aggarwal and Aggar-
wal 2016). Collaborative filtering is a technique that can recommend items based on
past interests of a user in combination with the opinions of similar, like-minded people.
While this technique does not take the contents of a particular item into consideration,
content based filtering focuses specifically on the contents of the item, and recommends
items that are similar to the items that a user liked in the past. To determine these ’past
interests’ of a user, some sort of feedback is needed from the user. This can either be
explicit feedback, or implicit feedback. Explicit feedback comes directly from the user,
such as a rating or review, whereas implicit feedback contains information about the
behavior of an user. Naturally, there is a more implicit feedback than explicit feedback
which is also the case for Steam. One very interesting implicit metric they track, is
the in-game time (or playtime) per game, as it is a very strong indicator of the actual
preferences of a certain user(Parra and Amatriain 2011).

Since Steam has a very favorable policy regarding the data you can extract from
their website, there are plenty of datasets that can be found on Steam users. This study
uses two separate datasets to test both the collaborative filtering method and the content
based method. The first dataset is a dataset that includes the playtimes of 12393 unique
users, and can be downloaded from Kaggle. The dataset is provided by the Tamber
Team (Tamber Team 2016). As stated before, playtime is a metric that can be seen as
implicit feedback, since it isn’t explicitly coming from the user himself. The second
dataset is also downloaded from Kaggle, and includes all characteristics of 27033 unique
games. This dataset is provided by Nik Davis (Davis 2019).
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Insights gained during this study can contribute to the different studies that have
already be conducted on this topic. This can be done by confirming whether or not the
insights from this study correspond with findings of the other studies. If this is the case,
the findings of those studies will become more reliable. Another contribution of this
study is the cleaned dataset which can be uploaded to github, to provide the scientific
community with a new dataset that is easier to work with and can be combined with
other datasets.

1.2 Research questions

In order to define the scope of this study, one research question and two sub-research
questions were formulated. The main research question captures the goal of this study
in one question, while the sub-research questions supplement the main research ques-
tion. The following research questions were formulated:

RQ: What type of recommender system performs best on the implicit data we have of the
users?

The main goal is to objectively compare the collaborative model with the content
based model, based on the chosen datasets.

SRQ1:What is the optimal number of latent factors for the collaborative model?

One very important aspect for the collaborative model, are the latent factors. These
factors determine how complex or how basic your model is going to be. For recom-
mender systems the optimal amount of latent factors may vary, since no dataset is the
same. Therefore, this sub research question is included.

SRQ2:Does adding descriptions of games to the metadata impact the performance of the
content based model?

For the content based model a selection of characteristics of the games is made, and
for the most part these selected characteristics are very obvious. However, the model
might actually perform better if it has more data, even though an entire description of a
game seems very extensive.

1.3 Structure

In Chapter 2 I will discuss the research that already has been done regarding this topic
and aditionally cover some of the core concepts and methods that will be used for study
will also be discussed. Chapter 3 explains the datasets in more detail and discusses the
setup of this study. Chapter 4 will then discuss the results of the models, and chapter
5 will interpret these results. Chapter 5 also describes what could have been done
differently during the study, and what possibilities there are in terms of future research.
To finalize the study, chapter 6 will simply answer the research questions, formulated
in section 1.2.
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2. Related Work

In this section the background information will be presented, as well as related research
to the topic.

2.1 Steam

As stated in the introduction, Steam is a platform that sells digital copies of games,
and allows users to play games via their platform. In 2003 Steam was developed and
launched by Valve Corporation as a software client that allowed Valve to provide users
automatic updates for their games. At the time, Steam provided this service for only
seven unique games, but the platform slowly evolved into the biggest digital distri-
bution platform for PC games. Currently, Steam offers a variety of over 30000 unique
games and has approximately 90 million active users (Gough 2020). Since Steam also
keeps track of a lot of interesting statistics and documents the characteristics of their
games very well, their website is a great source for collecting data on games. Steam
has a very easy to use API and a favorable policy regarding collecting and using data
from their website. The result of this is that there are a lot of publicly available datasets
already containing data on reviews, playtime, characteristics of games and so on. As
stated in the introduction, the amount of games Steam offers, in combination with so
many active users, makes Steam a perfect example of a platform that can benefit from
the implementation of a recommender system.

2.2 Recommender systems

Recommender systems are tools that try to predict a users’ possible future interests, by
using the data that already exist on that specific user and his preferences. The concept
of a recommender system was first introduced by Jussi Karlgren in 1990, where he
explains in his paper that like-minded people might actually have very good hidden
recommendations for each other (Karlgren 1990). Karlgren continued his work on the
recommender system, and in 1994 published a paper where he applied the recom-
mender system to predict recommendations for users of a news site (Karlgren 1994).
This marked the beginning of the commercial application of recommender systems, as
the potential benefits of an effective recommender were very promising. Some of these
potential benefits included: selling more items, sell more diverse items and increasing
the user satisfaction (Ricci, Rokach, and Shapira). Nowadays , almost all business that
sell products online, make use of a recommender system in one way or another. Broadly
speaking, there are two techniques used by these companies of recommending items to
users. The first technique being the content based filtering method, which focuses on
creating items profiles and user profiles, based on the contents of an item. The second
technique being the collaborative filtering method, which looks for similar like-minded
users, based their historical preferences.

2.2.1 Techniques. As mentioned before, the two main techniques for recommender
systems are the collaborative filtering method and the content based filtering method.
This section explains how both methods work and what their strengths and weaknesses
are. Quick side note: this section mentions ’the active user’ every now and then, which
refers to the user we try to predict recommendations for.
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2.2.2 Collaborative filtering. Collaborative filtering requires a user-item interaction ma-
trix that contains information on the preferences of each user. This user-item interaction
matrix has a MxN shape, where M is equal to the amount of unique users and N is
equal to the amount of unique items. The values that are stored within the user-item
interaction matrix are some measure of either explicit feedback, or implicit feedback.
Explicit feedback is easier to use for recommender systems, as this type of data directly
reflects the opinion of a user on an item, in contrast to implicit feedback (Hu, Koren,
and Volinsky 2008).

When the user-item interaction matrix is constructed, there are two approaches to
build a model that can generate recommendations. The first approach is the memory-
based model which is a neighborhood-based prediction algorithm, and it makes use of
the fact that like-minded individuals contain information about each other. It assumes
that if we have two persons, and person 1 likes items X, Y and Z and person 2 likes
items X and Y, that item Z is most likely a solid recommendation for person 2 (Hu,
Koren, and Volinsky 2008). This concept is illustrated in figure 1. The memory-based
model first computes the similarities between users, which is most commonly done by
computing the pearson correlation coefficient between the given ratings (Herlocker et al.
1999). After the similarities are computed, the model will select the top K most similar
users (or select all users above a certain similarity threshold), and compute the average
ratings among them. Lastly, the highest rated items on average will be recommended to
the active user.

Figure 1: collaborative filtering

The second method is the model-based approach. This approach can use different
machine learning algorithms such as bayesian networks, neural networks, clustering
models and latent factor models to recommend items. With these algorithms, a model
can be constructed, based on what it has learnt from the user-item interaction matrix.
Recently, the latent factor models in particular have been gaining more popularity, due
to their scalability and attractive accuracy (Yehuda Koren, Robert Bell, and Chris Volin-
sky 2009). The first time these latent factor models really stood out and outperformed
the classic memory-based recommender models, was during the Netflix recommender
system competition in 2009 (Yehuda Koren, Robert Bell, and Chris Volinsky 2009).

Collaborative models have the advantage that they can work on basically any item,
without understanding the items themselves. Additionally, a collaborative model can
also identify new interests for the users, if a lot of similar people also like a certain item.
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One of the biggest problems collaborative models currently face, is the cold start
problem (Lika, Kolomvatsos, and Hadjiefthymiades 2014). For new users, it is very hard
for the model to generate meaningful recommendations, as it is impossible to calculate
similarities between the new user and the existing users, as there is no data on the
interests of the new user. This also applies to new items, since there is no feedback
on these items.

2.2.3 Content-based filtering. Content-based recommender systems focus on the sim-
ilarities between items, instead of similarities between users. It tries to recommend
items, that are similar to the items that were previously liked by the active user. These
similarities are based on the characteristics of an item, or the contents of an item.
Content-based filtering therefore needs to two types of data, the user-item interaction
matrix and a dataset that contains information about the characteristics and contents of
the items.

First, the textual characteristics or contents have to be vectorized to a numerical
vector representation, which is most commonly done with the term frequency-inverse
document frequency (TF-IDF) function (Wang et al. 2018). This TF-IDF function outputs
a vector where each word is represented with a measures the relevancy for that specific
word. Then the most relevant words on average are selected from this output, and
used to build a user and item profile. The list with the most relevant words for a user
basically becomes the user profile, as they indicate what the users’ interest are (Pazzani
and Billsus 2007). Lastly, the cosine similarity between the user profile of the active user
and the item profiles is calculated, and the most similar items are recommended to the
active user. Figure 2 illustrates how a content based model works.

Figure 2: content based filtering

The big advantage of the content-based filtering method over the collaborative
filtering method is that it does not suffer from the cold start problem. If a user has inter-
acted with one item, the content based model can predict meaningful recommendations,
while the collaborative model would struggle to find similar users.

The biggest downside of the content-based model, is that it only looks at similar
items, and does not include the opinions of other users. This means that it can’t look
beyond the scope of the previous liked items of the active user, which means that all
recommendations will be similar to the previous liked items.
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2.3 Matrix factorization

For the collaborative model in this study, the choice was made to go with the model-
based approach, and more specifically, to build a Singular value decomposition (SVD)
model. This model was popularized by Simon Funk in 2009 when Funk ranked high
in the Netflix recommendation competition, and even shared his code with the world
before the end of the competition, so that others could use it (Piatetsky). There are more
Matrix factorization-based models, but for the sake of this study, the scope is limited to
the SVD algorithm.

SVD breaks the user-item interaction matrix down into three separate, smaller
matrices. The size of these smaller matrices are determined by the amount of latent
factors the SVD had, and can impact the performance of a model significantly. When
the original matrix is decomposed, the models puts out separate user matrix, a separate
item matrix and a diagonal matrix, containing the singular values, which can be seen as
weights. The dot product of these three matrices will result in a matrix that contains the
recommendations for all users (Becker 2016).

2.4 TF-IDF

To vectorize the characteristics of the games, the term frequency-inverse document
frequency(TF-IDF) vectorizer is used. TF-IDF is a vectorizer that can calculate the
relevancy of words in a document by analyzing their occurrences. This vectorizer is the
most common one for vectorizing characteristics of items for content based models (Beel
et al. 2016), because it can vectorize the metadata on the items in a more meaningful
way, than a traditional count vectorizer. Some other advantages of the TF-IDF vectorizer
include filtering out stop words, and not penalizing different lengths of the documents
that include the characteristics . After the characteristics are vectorized, the similarity
between items can bet calculated using the cosine similarity, as stated in section 2.2.3.
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3. Experimental Setup

This section explains what datasets have been used for this study, how these datasets
were preprocessed, what models were made and how these models can be evaluated.

3.1 Users dataset

The first dataset is a popular dataset about steam users and their playtime per game,
called the steam-200k dataset. It includes 12393 unique users, 5155 unique game titles
and has a 199999 x 5 shape. The dataset was downloaded from kaggle, and provided by
the Tamber Team (Tamber Team 2016).

The dataset was first cleaned, so that it was easier to work with the data. First,
all titles were removed that polluted the dataset, such as DLC’s, season passes and
special editions, as they contained very little information, and aren’t really main game
titles. Another reason for deleting these types of titles, is that they are really easy
recommendations. If for instance, game X has three DLC’s and the recommender system
knows a user owns game X, the three DLC’s will probably be recommended, and thus
pollute the recommendations.

Secondly, the cold start problem had to be taken into account. Cases where the user
owned less than five games, or where a game is played for less than 25 hours in total
(over the entire dataset), were removed. These numbers are arbitrarily chosen. If a user
owns less than five games, it is hard to find similar people, which leads to meaningless
recommendations. This also applies to games which haven´t been played much, as there
are too little players (sometimes even none at all) who liked that game, and it will end
up not being recommended at all.

Lastly, the decision was made to transform the playtime data, into explicit ratings,
as this works better for the SVD algorithm. This was inspired by (Parra and Amatri-
ain 2011), as they showed that there is a strong relation between implicit feedback
and explicit ratings. They also describe that adding a ‘recentness’ component to this
transformation has a significant positive effect on the transformation. Unfortunately,
this dataset does not contain any information about when a certain game is played
for the last time, which makes adding a recentness component to the transformation
impossible. Thus the transformation of the implicit data to explicit ratings was fairly
basic. For each game the global average of playtime was calculated, which was then
used to map the individual playtimes to a rating between one and five. For each rating
there were the following thresholds: if a user played more than average, a rating of 5
was given, if a user played 80% or more of the average playtime, a rating of 4 was given,
if a user played 50% or more of the average playtime, a rating of 3 was given, if a user
played 10% or more of the average playtime, a rating of 2 was given and lastly if a user
played 10% or less of the average playtime, a rating of 1 was given.

Now that the dataset was ready to be used, the user-item interaction matrix was
constructed. As stated in section 2.2.2, the user-item interaction matrix is a MxN matrix,
where M is equal to the unique number of users, and N is equal to the unique number of
items. First a MxN zero matrix was created, to then be filled with the calculated ratings
for each user. Appendix A shows a screenshot of what the matrix looks like.

3.2 Games dataset

The second dataset contains information about the characteristics and descriptions of
27075 unique titles that are available on steam. There are 21 unique features in this

9



Cognitive Science & Artificial Intelligence OR Data Science & Society 2020

dataset, which gives the dataset a shape of 27075x21. This dataset was downloaded
from kaggle, and provided by Nik Davis (Davis 2019).

As this dataset is only used for the content based model, a selection of relevant
features had to be made. The following features were included for the model: developer,
categories, genre, tags and description. All other irrelevant features were dropped, and
to make it simpler for the modelling later on, all the features were merged into one big
feature, called the metadata feature. The metadata feature first needed to be tokenized,
so that it could be vectorized later on. Accordingly, all punctuation and inconvenient
spaces between names were removed, so that the feature could be vectorized. As
stated in section 2.4, the most commonly used method for vectorization is the TF-IDF
vectorizer, which was also used for this dataset.

3.3 Combining the datasets

For the content based model, the user-item interaction matrix needed to be combined
with the games dataset from the previous section. Initially, the idea was to combine
the models based on the game titles, as the assumption was that the game titles would
match. Unfortunately, not all game titles of the user-item interaction matrix could be
found in the games dataset, as a lot of titles weren’t a one on one match. Therefore a
large proportion of the steam-200k dataset had to be removed, since a part of the titles
could not be found in the games dataset. To find as much titles as possible, the titles
were first stripped from all odd symbols and punctuation, and then all titles were lower
cased. Removing the games that could not be found eventually resulted in the size of the
steam-200k dataset being reduced from 199999x5 to 57579x5. Lastly, the steam app ID
was also added to the steam-200k dataset, so that each game had an unique ID, which
referred to the same game in both dataset and the user-item interaction matrix.

After the datasets were matched, the new user-item interaction matrix could be con-
structed following the same procedure as described section 3.1. An user-item interaction
matrix with the size of 2814x943 was the result.

3.4 Method / Models

This subsection will discuss the different models, and how they were constructed.

3.4.1 Baseline model. A commonly used baseline model for recommender systems, is
the popularity model. This model recommends items from the top 10 most popular
items, which the user hasn’t interacted with yet. For this study, the popularity model is
set to the baseline model.

3.4.2 Collaborative model. For the collaborative model, the matrix factorization model
called Singular Value Decomposition(SVD) from scipy is used. As stated in the relevant
works section, SVD decomposes the original matrix into three smaller matrices. In this
case, the first two decomposed matrices U and V, will represent the users matrix and the
items matrix respectively. The third matrix S is a diagonal matrix filled with singular
values, which can be seen as weights. If we call our user-item interaction matrix R, we
can formulate the following equation (Becker 2016):

R = USV t

10
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The most important part of the SVD are the number of latent factors. Latent factors
are basically the most important features the SVD can extract from the original dataset,
and they decide the size of the decomposed matrices (Becker 2016). In general, the more
latent factors there are, the better the decomposed matrices can reconstruct the original
matrix. Although more latent factors might seem like a good thing, this downside of
having more latent factors is that the model is prone to over fit. To test how much latent
factors were optimal for this study, two models were tested, one with 10 latent factors
and one with 50 latent factors. These values were initially chosen to determine whether
our dataset could benefit from a more complex decomposition of the dataset, or a more
basic one. Later the model was tuned to the optimal amount of latent factors.

Another important aspect for the collaborative model is the input. To test if chang-
ing the input would impact the performance of the collaborative model, a model with
a function that scaled all the ratings down was included as well. The function was
a simple log transformation, which was already provided by the notebook of Gabriel
Moreira (Moreira 2019). If R is our new rating and r is our old rating, the function can
be written as follows:

R = log2(r)

The last thing that needed to be done was actually constructing the matrix that
contained all the recommendations for each user. This matrix was constructed by first
calculating the dot product of matrix U and S, and then multiplying this outcome with
matrix V. The result is the approximation of the original matrix at K latent factors, and
at the same time contains no zero values anymore, as can be seen in appendix 2.

Then for each user, the values within the matrix are sorted and the highest ranked
ones can be recommended to the user. Figure 3 illustrates the process for the collabora-
tive model.

Figure 3: SVD

3.4.3 content based model. The content based model makes use of the different charac-
teristics that each game has, and looks for similarities within those characteristics. As
stated in section 2.2.3, the content based model constructs item and user profiles, which
it uses to recommend items. Since the recommendations of the content based model
are heavily influenced by the metadata feature, there were three variations of metadata,
to see which one was performing best. The first and the most basic model included
only the relevant characteristics of a game. The second variation of metadata combined

11
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the characteristics with a detailed description of the game, and the last one only in-
cluded the detailed description. When all the selected characteristics were merged into
the metadata feature, the feature could be tokenized and vectorized, as explained in
section 3.2. The TD-IDF vectorizer assigns values to each word in the metadata, which
represent the relevancy of that word in the metadata. This results in each game having
a vector, filled with values for all words within its metadata, where the highest values
correspond with the most relevant words for that game. The vectors that store these
values, represent the item profiles (Pazzani and Billsus 2007). An example of an item
profile can be found in appendix B.

To build the user profiles, the user-item interaction matrix was needed again to
find the games each user interacted with. Additionally, the ratings calculated for each
interaction were also taken into account, as they served as a weight. It makes sense to
weigh the relevant words from liked games heavier than the relevant words of games
that the user didn’t like as much. First, all item profiles of the items a user interacted
with, were extracted from the matrix that stored these profiles. Then, all extracted item
profiles get multiplied by the individual ratings that were given for each item. This
makes it so that the most liked items profiles contain higher values than the less liked
items. After the multiplication, the average relevancy per word was calculated and
sorted. The result is a user profile, where the most relevant words for that specific user
are at the top. For this study, a function was used that iterated over all unique users to
build all the user profiles. An example of a user profile can be found in appendix C.

After these profiles were constructed, the cosine similarity between the user profiles
and the item profiles were computed, and the item profiles that are the most similar to
the user profile, got recommended to the user.

Figure 4: Content based RS

3.5 Evaluation

In order to measure the performance of the different models in an objective manner, the
data was first splitted in a training set and a testing set. This allowed hyper parameter
tuning, as the change in performance can be seen when the model gets tested on the
test set. The split was a 80/20 split, and both the training and test set, were randomly
selected.
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For the evaluation metric, the top-n accuracy was used, as this is an easy metric
to compare across different methods (Cremonesi, Koren, and Turrin 2010). The top-n
accuracy works as follows:

For each game that’s in the test set, another 100 random games were selected, and it
is assumed these games are not relevant for the user. After the selection, the models were
used to compute the recommendation values for all of the selected games (100 random
ones and 1 relevant one). All these 101 recommendation values were then sorted from
high to low and the top N recommendations of that list are selected. If the test game is
included within this top N, we have a hit, otherwise a miss. With these hit or miss rates
we can calculate the recall metric at a certain N, which is called the Recall@N metric.

With this evaluation metric two collaborative models were tested with different
amounts of latent vectors, to get an idea of where the optimal amount would be, one
with 10 latent factors and one with 50 latent factors. The model with 10 latent factors
performed significantly better. After running several tests with models that had less
than 10 latent factors, the optimal number seemed to be 7.
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4. Results

This section discusses the results that were obtained per different model. It will be split
up in three parts, one for the popularity recommender, one for the collaborative model
and one for the content based model.

4.1 Popularity

The popularity model is a very strong baseline model, which makes sense, since it rec-
ommends items that are liked by the majority of the users. For this study, the popularity
scored a recall@5 of 0.422, and a recall@10 of 0.558, which are fairly decent scores for a
baseline model.

4.2 Collaborative

As stated in section 3.5, the models were trained on the training set, and tested on the
test set. For the collaborative model, two models were tested, one with 10 latent factors
and one with 7 latent factors. For each of the models there was one other variation of
the model added where the ratings, basically the input, was smoothed out. This leaves
a total of 4 models being tested for the collaborative models.

The difference in performance between the models with 10 latent factors and 7
latent factors was very little. However, smoothing out the ratings did improve the
performance of both models by quite a bit. The vanilla SVD@10 LF, scored a recall@5
of 0.483 and a recall@10 of 0.613. If the ratings are then smoothed out, the recall@5 was
pushed to 0.505 and the recall@10 to 0.638. For the vanilla SVD@7 LF, a recall@5 of 0.489
and a recall@10 of 0.619 was obtained and with the added smoothing for the ratings
the model scored a recall@5 of 0.512 and a recall@10 of 0.643. A clear overview of the
collaborative models and their performance can be seen in figure 5.

Figure 5: Collaborative models

4.3 Content based

For the content based three models were built, as stated in 3.4.3. The first model only
looks at the more general characteristics of a game, such as category, genre and game
tags. The second model combines the same characteristics of the first model, with a
detailed description of the game, to see if adding a description improves performance
of the model. The last model only takes the description of a game into account. The
first model, which is the most basic model, scored a recall@5 of 0.312 and a recall@10 of
0.436. The second model, which combined the characteristics and the description of a
game, scored a recall@5 of 0.328 and a recall@10 of 0.479. Removing the characteristics
of a game from the game, hurt the performance significantly. The recall@5 for the last
model was 0.244 and the recall@10 0.379. A clear overview of the content based models
and their performance can be seen in figure 6.
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Figure 6: Content based models

4.4 Comparing models

In order to objectively compare the models, only the best performing model for each
method were selected. As the results show, the collaborative model works best for our
dataset on steam games. The recall@5 score for the best collaborative model was 0.184
higher than the best content based model. For the recall@10, the difference between the
collaborative model and the content based model slightly decreased to 0.164, obviously
still in favor of the collaborative model. Figure 7 shows all the models that were tested,
and their performance.

Figure 7: All models
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5. Discussion

In this section the results will be interpreted, and the setup of this study will be
evaluated. Furthermore, the limitations of this study and some suggestions for further
research will be discussed.

5.1 Results

For the collaborative models I expected the model with 7 latent factors to perform
best, considering that the dataset for this study was not that big. Although it was
somewhat surprising to see the model perform slightly better when the ratings were
scaled down. However, to see the content based model with the added description
outperform the other models was surprising. One could argue that because you add
a lot more data to the model, some of the valuable characteristics of the games could
suffer from this added data, as you are polluting the metadata with a lot more words
that aren’t necessarily relevant. I expected that the plain simple genres, categories and
tags would be the best model for the content based model, as they practically describe
the game in less words. My guess is that the TF-IDF does a really good job at calculating
the relevancy of each word, and that the pollution in the metadata feature doesn’t really
hurt the TF-IDF vectorizer.

Now the overall conclusion we can derive from comparing the models, is that the
collaborative model is the superior model in terms of predicting meaningful recommen-
dations, which is in line with the findings of other studies like (Yehuda Koren, Robert
Bell, and Chris Volinsky 2009). Although the comparison within the study was easy, it is
unfortunate that we can’t really compare absolute performance of the models between
different studies, as the top N accuracy metric is influenced by so many factors. Just the
fact that no dataset is the same, and that the quality of different datasets varies wildly,
makes it almost impossible to objectively compare my best model to someone else’s
model.

5.2 Data

First, the datasets seemed very promising, but after working with the data for a while,
there were some unfortunate issues with the datasets. First of all, a large proportion of
the users didn’t play enough games to be valuable for the recommender system. These
players had to be deleted from the dataset, which resulted in a dataset that included
only 2814 unique users instead of the original 12393 unique users. Secondly, combining
both datasets gave some issues, as the titles of the games didn’t match one on one. In an
attempt to counter this issue, the datasets were matched based on ‘most’ similar titles,
which was calculated using the Levenshtein distance. Although this method found 20
titles more, it did have its flaws. Some titles ended up being matched to titles which
weren’t the right ones. Since the Levenshtein method only found 20 titles more and was
not reliable, the decision was made to stick with just deleting the games that weren’t a
one on one match. This leaves the dataset with only 2814 unique users and 943 unique
games, which is relatively small compared to some of the commonly used datasets for
testing recommender systems like the MovieLens dataset (MovieLens). Although the
dataset this ended up in being a limiting factor for this study, the cleaned dataset might
be of use for other research purposes.

For further research and testing, there is one publicly available dataset on steam
users and games, which includes information on 109 million users, provided by Marc
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O’Neil, and his colleagues at Brigham Young University (O’Neil 2016). The only down-
side of this dataset was the fact that it was a SQL dataset, which I’m not familiar with.
Due to the limited time there was for this study, I could not explore the possibilities with
this dataset.

5.3 Models

For the collaborative model there several ways of improving the performance of the
model. Currently the SVD algorithm was used to build the collaborative model, but
there are a lot of different matrix factorization models. One model in particular that
seems promising, is the SVD++ model. In most research papers where the SVD++ model
is tested, it performed better than the SVD model, and it seems like it could potentially
work on the datasets for this study (Xian et al. 2017).

Another technique that was not covered in this study are hybrid models, which is
a combination of the collaborative model and the content based model. This technique
could also potentially be tested on this dataset, although I don’t expect a big perfor-
mance boost. Boon did research to the hybrid models on a similar dataset, where the
hybrid recommender only performed 3,7 percent better than his traditional collabora-
tive model (Boon 2019) . The content based model was performing quite well for this
dataset, and so I wouldn’t change much about the model itself.

5.4 Summary

The real limitations for this study were the time in which the study had to be completed,
and the quality of the dataset. If there was enough time to either match both the datasets
in a better way, or to explore the possibilities of the alternative dataset mentioned in
section 5.3, the results and findings of this study could have been more decisive.

Exploring the different techniques for the collaborative model, could have been very
interesting, but testing so many variations of the collaborative model, could also become
overwhelming. In terms of performance of the collaborative models, there also was less
to be gained here, since the basic but solid SVD technique for the collaborative model
performed quite well.

Finally the conclusion of this study is that collaborative models work better for
recommending items than the content based models, which is in line with the findings
of other studies.
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6. Conclusion

Finally, in this section the research questions will be answered.

RQ: What type of recommender system performs best on the implicit data we have on the
users?

For the dataset that was used for this study, the collaborative model scored a higher
recall@5 and recall@10 percentage than the content based model, thus we can conclude
that the collaborative model is superior to the content based model. However, this
does not mean that content based models are useless, as they can recommend more
niche items than the collaborative model, which actually might be preferred in some
situations.

SRQ1 : What is the optimal number of latent factors for the collaborative model?

First the collaborative model was tested with 10 latent factors and 50 to determine if
a more complex SVD model would be perform better on this dataset. Luckily, the more
basic model performed better and after finetuning the model for some time, 7 latent
vectors seemed to be the best number of latent vectors.

RQ2: Does adding descriptions of games to the metadata impact the performance of the
content based model?

The model which only contained the characteristics of a game, performed slightly
worse than the model where the description of games were added. For this dataset,
adding more relevant information to a content based model, improved the quality of
the recommendations.

18



Collaborative versus Content based

References
Aggarwal, Charu C. and Charu C. Aggarwal. 2016. An Introduction to Recommender Systems.

In Recommender Systems. Springer International Publishing, pages 1–28.
Becker, Nick. 2016. Matrix Factorization for Movie Recommendations in Python - nick becker.
Beel, Joeran, Bela Gipp, Stefan Langer, and Corinna Breitinger. 2016. Research-paper

recommender systems: a literature survey. International Journal on Digital Libraries,
17(4):305–338.

Bolding, Jonathan. 2019. Steam now has 30,000 games | PC Gamer.
Boon, Justin V. 2019. DESIGNING A HYBRID RECOMMENDER SYSTEM FOR STEAM

GAMES. Technical report.
Cremonesi, Paolo, Yehuda Koren, and Roberto Turrin. 2010. Performance of Recommender

Algorithms on Top-N Recommendation Tasks General Terms.
Davis, Nik. 2019. Steam Store Games (Clean dataset) | Kaggle.
Gough, Christina. 2020. Number of Steam users 2020.
Herlocker, Jonathan L., Joseph A. Konstan, Al Borchers, and John Riedl. 1999. An algorithmic

framework for performing collaborative filtering. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
1999, pages 230–237, Association for Computing Machinery, Inc, New York, New York, USA.

Hu, Yifan, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback
Datasets. Technical report.

Karlgren, Jussi. 1990. An Algebra for Recommendations An Algebra for Recommendations
Using Reader Data as a Basis for Measuring Document Proximity. Technical report.

Karlgren, Jussi. 1994. Newsgroup Clustering Based On User Behavior - A Recommendation
Algebra.

Lika, Blerina, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. 2014. Facing the cold start
problem in recommender systems. Expert Systems with Applications, 41(4 PART 2):2065–2073.

Moreira, Gabriel. 2019. Recommender Systems in Python 101.
MovieLens. MovieLens | GroupLens.
O’Neil, Justin; Vaziripour Elham; Zappala Daniel, Mark ; Wu. 2016. Steam Dataset.
Parra, Denis and Xavier Amatriain. 2011. Walk the Talk Analyzing the relation between implicit

and explicit feedback for preference elicitation. Technical report.
Pazzani, Michael J. and Daniel Billsus. 2007. Content-based recommendation systems. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 4321 LNCS, pages 325–341, Springer Verlag.

Piatetsky, Gregory. Interview with Simon Funk. Technical report, KDnuggets.
Ricci, Francesco, Lior Rokach, and Bracha Shapira. Introduction to Recommender Systems

Handbook.
Tamber Team. 2016. Steam Video Games | Kaggle.
Wang, Donghui, Yanchun Liang, Dong Xu, Xiaoyue Feng, and Renchu Guan. 2018. A

content-based recommender system for computer science publications. Knowledge-Based
Systems, 157:1–9.

Xian, Zhengzheng, Qiliang Li, Gai Li, and Lei Li. 2017. New Collaborative Filtering Algorithms
Based on SVD++ and Differential Privacy. Mathematical Problems in Engineering, 2017.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for
recommender systems. Technical report.

19



Cognitive Science & Artificial Intelligence OR Data Science & Society 2020

Appendix A: User-item interaction matrix
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Appendix B: Item profile of Skyrim
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Appendix C: User profile
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