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What Does It Take To Win: Predicting
Performance in Cycling Based on Training
Load

Laura Kooijman

In professional cycling training schedules are optimized to perfection. But to know on beforehand
if the training schedule has the desired effect, there is the need to know what effect the training
had on race performance. In this research a logistic regression, a support vector machine and a
random forest are developed to predict race performance of a professional female cyclist, based on
training load. The data consists of the races and training of 2017-2019. The research question
that will be answered is: To what extent can race performance be predicted in cycling, based on
training load?

Athlete data is often limited in size as athletes only can do a number of races per year which
makes the data impractical for predictive modelling. This study investigates which techniques are
helpful in classifying race performance. Class balancing is performed using weight adjustment
and the SMOTE technique. In addition to that, PCA is performed. The random forest with
weight adjustment gave the best result with a F1-score of 0.88, which shows that it is possible to
predict race performance with a small dataset. The PCA showed an improvement in prediction
for the SVM with an F1-score of 0.872, which is an improvement but not as high as the random
forest. This means that the PCA was not beneficial for this dataset.

1. Introduction

When the Tour the France started in 1903, it was a small race with just 60 cyclists
competing. Their bikes were from titanium or aluminium, they were wearing their
everyday clothes and they had to be self-sufficient. Nowadays, bikes are made from
carbon, clothes are designed to be light-weight and a whole crew is working behind
the cyclist to optimize their performance. The only thing that has stayed the same over
the years is the mentality to win. One of the aspects that is important for athletes to
optimize, is their training plan. In training, they face the trade-off of training too hard
and risk injury or overtraining, or training too little, and having a competitor that is
better. A measure that is used to show this trade-off is Training Load (TL). In an ideal
situation, the Training Load is maximized in the training period, and minimized in the
week before the race, to be able to perform well at races.

Researchers have attempted to model the relationship between Training Load and
performance in ice skating (Orie et al. 2020) as well as in triathlon (Stoeber, Uphill, and
Hotham 2009) but for cycling, this specific relationship is quite understudied as it is
hard to define performance in a sport like cycling. In ice skating, it is simple, the format
is often the same and the environment much more controllable, whereas in cycling,
races do not have a rigid format, which makes it much harder to compare performance
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in different races. Nevertheless, it is interesting to see to what extend it is possible to
predict race performance as on training load.

The prediction of this relationship would not only be interesting for athletes and
their coaches, but also for researchers in the field of data mining. The data provided
by cyclists is often of good quality but of a small size. This makes it hard to generalize
results and to train models effectively on the data. This study will show if it is possible
to train simple linear models on a very small dataset. The focus will be on using the data
as effectively as possible to make accurate predictions. The results of this study could
be used in the future as a guide on what techniques and algorithms work and do not
work for small datasets.

In this study, training and racing data of a professional female cyclist will be used
to develop a model that is able to predict race performance based on training data. The
race performance is predicted on the basis of classification, the race results are divided
in two categories; a top-10 result or lower than top-10 result. To come to these results,
the following questions are formulated:

The main question is: To what extent can race performance be predicted in cycling, based
on training load?

This question is substantiated by the following sub-questions:

*  RQ1 - Which model is best suited when evaluated by the F1-score? The
models that are tested are Linear Support Vector Machine, Random Forest
or Logistic Regression.

*  RQ2 - What is the effect of balancing the classes and which method is best
suited for that? The methods that are tested are weight adjustment and
Synthetic Minority Oversampling Technique (SMOTE)

*  RQ3 - To what extend does Principal Component Analysis contribute to
the performance of the models?

*  RQ4 - Which features are important in the prediction of performance?

The sub-questions are designed to be able to evaluate what the effect is of each
method on the data and so the be able to find the optimal combinations of techniques for
a small dataset. All model performances are evaluated by the Fl-score. The first question
will find which predictor is best suited for this dataset. Secondly, different balancing
techniques are tested to see if balancing the classes has any effect on the performance
of the models. Unbalanced classes often lead to models that classify every instance as
the majority class as that gives a fair result on average. Balancing methods try to correct
for this behaviour, which will eventually lead to more realistic outcome. Thirdly, PCA
is used as it is known to reduce dimensionality and to reduce noise. In addition to that,
the dataset that is used in this thesis has a lot of correlations between the features and
PCA will remove those correlations. Lastly, the important features will be selected from
the model that performs best. This selection is done to give a guideline to athletes and
their coaches because it shows them which training variables they have to focus on.
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The following section gives an overview of literature that is available on these
concepts. Secondly, the data and methodology are discussed, which will be concluded
with the results of the models and the discussion of those results. Finally, answers to the
research questions will be provided.

2. Related Work

In this part of the thesis, a summary of the relevant literature is presented. In the
first part, relevant literature regarding Training Load is discussed. In the second part,
relevant literature regarding machine learning techniques for similar situations as this
one are discussed.

2.1 Training Load

To evaluate what the effect of training is on the body, training needs to be quantified.
Training can be quantified with data such as duration (minutes), intensity (heartrate)
or power output (watts). Trainig Load is a parameter that measures the impact of a
training session on an athlete. It can be expressed in different ways such as session
Rate-of-Perceived-Exhaustion (sRPE), mean heart rate (HR) and Power Output (PO)
(van Erp 2020). sRPE is a subjective measure based on the Borg Scale (Borg 1998). It is
a scale ranging from 6-20 which represents how the athlete perceived the intensity of
a workout, the rate of perceived exertion (RPE). Athletes rate their workouts with the
Borg Scale as soon as they finish. For the sRPE, the RPE is multiplied by the duration of
the workout in minutes. Mean heart rate is the simply the average heart rate during the
session and the Power Output is the average power in watts athletes produce during a
workout.

It is important to know if a certain training measure can be used to quantify TL
before starting an analysis. All of these previously mentioned training measures are
correlated with each other and are proved to be valid measures for TL in training
(Sanders D 2017). Van Erp and De Koning (2018) investigated if these measures behave
the same in both training and racing, which is the case. Their research makes it possible
to use TL for both training and racing and thus quantifying both efforts. Therefore, TL
in the form of sRPE is used as input for the prediction model of this thesis.

2.2 Determinants of Cycling Performance

To provide some background on the relationship between training load and race per-
formance in cycling, it is good to know which variables are important in determining
cycling performance. Philips and Hopkins (2020) did a systematic review on the deter-
minants of cycling performance. They divided the determinants of cycling performance
in four dimensions; features related to the individual cyclist, tactical features, strategic
features and global features. Training Load belongs to the features related to the indi-
vidual cyclist, more specifically, related to training techniques. The study shows that
an improvement in training techniques shows an improvement in race performance
(Philips and Hopkins 2020). Secondly, the study shows that the features are intertwined
and that there is a complex interplay between the different features and dimensions,
and that it is therefore difficult to understand the relation between the features. This



Data Science & Society 2021

__Fatigue

i — Fitness

-

Performance

Training effect

Injury risk?

Time

Figure 1
The Relationship between Fitness and Fatigue in Relation to Performance and Injury Risk
(Calvert et al. 1976)

finding is something to keep in mind when modelling the relationship between TL and
performance.

Interestingly, the authors state that improvements in training techniques has
reached a ceiling. If this study shows that race performance can be predicted by Training
Load, it indicates that there are still chances to improve training techniques. This is a
sign that the thesis can be a useful contribution to the field.

2.3 Sports Analytics for Professional Speed Skating

Another study that provides helpful insights in what is already done in the sports indus-
try is the article of Orie et al. (2020). In this study, the data of a professional speed skater
is analysed using LASSO Regression. What is especially helpful is the visualization of
the relation between training load and performance which is shown in Figure 1. Orie
et al. (2020) state: "When doing a certain training routine, it can be expected that the
relationship is in fact curved, with peak performance being achieved at a certain optimal
load on the human body. Doing too little will not achieve the right effect, but doing
too much of the training also produces sub-optimal performance. Specifically, one can
expect thresholds in the training load above (or below) which performance will rapidly
diminish.". This quote corresponds with the figure.

In addition to that, this study faces a similar challenge with regard to the time
sensitivity of the data. Orie et al. spend a considerable amount of effort into feature
construction and they approach time with the Fitness-Fatique model: the effect of a
training becomes less as the days pass as well as the fatigue of that training. This
phenomenon can be modelled with the following mathematical function:

hyp(m) = (e Mim _ gmAaeim) _ [emAfat™ i, > ()
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The values for the parameters are as followed: A ¢;; =50 days, Afqr = 15 days, Ager =
5 days, where fit determines the positive effect of training, fat determines the shape
of the fatigue curve and del affects the exponential function that influences the fitness
(fit). As the authors state, the results for the LASSO Regression did not lead to a good
fitting model with an R? of 0.721, but the time approach of fitness and fatigue and the
visualization of the optimum are valuable insights that can be taken into account when
designing a model for this thesis.

2.4 Predicting Running Injuries from Training Load

An article that is a good addition to the article of Orie et al. is the article of Dijkhuis
et al. (2017). In this article a model which predicts running injuries is developed based
on Training Load. They did this using a Random Forest. This article shows, as well as
the article of Orie et al., that Training Load has the trade-off in hours of training as
can also be seen in Figure 1. Before training the random forest, feature selection (based
on random forest as well) was used to identify which variables were predictive for
identifying the risk of injuries. Out of 85 variables, eventually 10 were selected. The
features that are selected by the model are:

*  Average workload week 2

e  Sum workload week 2

®  Percentage change monotony between week 1 and 2
®  Acute:chronic ratio 7 over 42 week 7

*  Acute:chronic ratio 7 over 28 week 7

e  Percentage change strain between week 1 and 2

*  Percentage change workload between week 2 and 3
*  Acute:chronic ratio 7 over 42 week 2

®  Percentage change strain between week 2 and 3

U Strain 2

The eventual model had an accuracy of 67% (Dijkhuis et al. 2017). The research
showed that the feature selection had a positive effect on the accuracy of the model
with an improvement in accuracy of 6%.

These findings are interesting because the data and the research design show a lot of
similarities with the thesis. A comparison between this set of selected features and the
set of features selected in the thesis can be made afterwards to see if the results align.
Especially for the time component in both studies it will be interesting to see if there is
a time-span, such as four weeks prior, that is more predictive than other time-spans. In
addition to that, this study shows that the Acute:Chronic ratio plays an important role
in the prediction of injuries. This feature is therefore also included in the thesis to see if
it plays a similar role in the prediction of performance.
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2.5 Analysis of Dimensionality Reduction Techniques on Big Data

Predictions on classification can be done with various models. Finetuning by means of
pre-processing or feature engineering gives even more options. The article of Reddy et
al. (2020) provides an overview of testing different models with different dimensionality
reduction techniques on different datasets to give a guide on which combination of
models has the desired predictive power for a certain dataset. In this study a Decision
Tree, Support Vector Machine, Naive Bayes Classifier and a Random Forest are trained
on medical datasets of varying sizes. For the dimensionality reduction technique Linear
Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are used.

The results show that firstly, the PCA performs better than the LDA in all measures
and that the Decision Tree and Random Forest are not much affected by the dimension-
ality reduction. Secondly, the SVM and Random Forest outperform the other classifiers.
Thirdly, the classifiers with PCA performed better than the classifiers without PCA.
Fourthly, PCA was more useful for datasets with a high variance and lastly, (Reddy et al.
2020) found that when the size of the dataset is too small, the dimensionality reduction
techniques have a negative impact on the classifiers.

These results provide a useful guide for this thesis on multiple aspects. The method
of testing different combinations of algorithms and reduction techniques shows how
much the performance per combination can vary. The effect of PCA on the SVM and
Random Forest provide mixed results and it will be interesting to see what the results
of these algorithms will be on the thesis dataset as the data has a high variance but is
limited in size.

2.6 The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for
Side-channel Evaluations

Before answering RQ2 about balancing classes, it is good to provide some background
on the topic. There are several ways of balancing classes such as assigning different
weights to the classes in a model, deleting samples of the majority class by under-
sampling or creating new synthetic samples by over-sampling. The article of Picek et
al. (2019) provides an overview of the effectiveness of different balancing techniques. In
the study they tested the SMOTE over- and under-sampling technique and adjustments
of class weights. The authors tested these techniques on a SVM and a Random Forest.
Their results show that the classifiers did not generate reliable results when used on
imbalanced datasets without balancing method. Secondly, they found that class-weight
adjustment improves performance but SMOTE provides an even better result, even in
the presence of noise (Picek et al. 2019). These findings are taken into account with the
design of the balancing methods for the thesis.

These selected articles provide a short overview of what has already been done in
the field of sports analytics and data science for small datasets. They give a solid base
for the upcoming research. All articles show that it is possible to make predictions with
a similar type of data as well as a similar size of dataset with both SVM’s and Random
Forests.
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Figure 2
Classification with Linear SVM (Meyer and Wien 2015)

3. Method

This section describes the models and algorithms that are used to answer the research
questions. The techniques will be discussed per research question.

3.1 Models

3.1.1 Support Vector Machine. A Support Vector Machine is a relative simple super-
vised learning algorithm. It makes predictions based on separating a hyperplane by
maximizing the space between the two closest data points of two different classes
(Meyer and Wien 2015). A graphical visualization of this phenomenon is shown in
Figure 2. Data can be linear as well as non-linear as the hyperplanes can take different
forms. For this thesis, a linear SVM is used as SVM’s are known to be robust classifiers.

3.1.2 Logistic Regression. Logistic Regression does the exact opposite of the SVM as it
draws a line as close to the data points as possible. Instead of drawing a line between
the classes, Logistic Regression calculates the odds of a data point being one class or the
other, based on the sigmoid function which give the log-odds:

1
ha(w) = 1+e 6Tz
After the log-odds are calculated, a linear relationship is assumed between the log-odds
and the predictor variables. For binary classification, this means that when the odds of
a class are higher than 0.5, the data point is predicted to be that class (Yildirim 2020).

3.1.3 Random Forest. Where the SVM and Logistic Regression perform their predictions
on a linear base, a random forest bases it’s outcome on the outcomes of it’s decision
trees. A random forest is build from decision trees which in turn are build from different
leaf nodes. The leaf nodes each perform a logical test on the predictors and give the
probability of a data point being one class or the other. These leave nodes together give
a weighted decision on the classification of a data point (Yiu 2020). Because decision
trees are sensitive to which part of the dataset is fed first, random forest are introduced.
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Random forests take the predictions of the individual decision trees into account and
therefore protect for their individual error.

These three models are all rather ‘simple’ supervised learning algorithms that work
differently. A simple supervised model is preferred as the dataset is small and an overly
complicated model can easily lead to overfitting (Lever, Krzywinski, and Altman 2016).

3.2 Balancing

As the classes in the thesis dataset are imbalanced, there is a need to compensate for
that imbalance. When an imbalance dataset is fed into the models, especially the ones
on a linear base, the models will predict all data points as the majority class (Khosh-
goftaar, Gao, and Seliya 2010). To compensate for the imbalance, there are roughly two
techniques; "in model" adjustment by adjustment of weights and modifying the size of
the classes. Both techniques are used in this thesis.

3.2.1 Adjustment of Model Weights. The adjustments of class weights in the process
of fitting a model is an elegant way of accounting for class imbalance. As a model
learns from each data point, it adjusts it’s function slightly every time a prediction is
not correct. Class weights provide a way to give more emphasis on a class. The weights
are applied to the cost function. This means that when a bigger weight is assigned to a
class, a wrong prediction is marked as more important than a wrong prediction in the
class with a smaller weight (Zhu et al. 2018). The consequence of this is that the model
will adapt it’s parameter more towards the class with a higher assigned weight. This
way, it is still possible to make predictions on a dataset with classes of different sizes.

3.2.2 SMOTE. The Synthetic Minority Oversampling Technique is a technique that
over-samples the minority class. The synthetic data points are created using k-nearest
neighbour (knn) of the minority class. Along the line of this knn, synthetic data points
are randomly chosen, depending on the amount of extra points needed (Chawla et al.
2002). This leads to a more realistic dataset than when the minority class is simply
duplicated and therefore leads to a more realistic classification.

3.3 PCA

Principal Component Analysis provides a way of representing the information data
holds in a different way. Pearson formulates the analysis as finding "lines and planes
of closest fit to systems of points in space” (Wold, Esbensen, and Geladi 1987). In other
words, principal components represent the explained variance of the variables. PCA can
have many applications such as simplification, dimensionality reduction, visualization
and variable selection (Wold, Esbensen, and Geladi 1987). In this thesis, the main goal of
PCA will be simplification of the data and dimensionality reduction. As some features
share the variance due to the fact that these features contain information of other
features (Training Load of 1 week is also present in the Training Load of 8 weeks),
PCA could capture this information much more efficient than the traditional way of
representing data.
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3.4 Feature importance

The feature will be determined by the best performing models. These models each
determine feature importance in their own way. For the SVM, feature importance is
calculated by the classifier coefficients which are determined by the hyperplanes. The
logistic regression does in some sense the same as it also calculates the coefficients of
the line drawn through the data points. The random forest calculates importance based
on impurity or information gain, dependent on which parameter the model is set. For
impurity the features with the lowest value are most important while for information
gain, the highest value is important.

4. Experimental Setup

In this section, the data and experimental setup is described. In addition to that, the
selected packages and hyper-parameters are described and their choices are motivated.

4.1 Data

The data provided consists of two datasets. Dataset 1 contains the raw data of all
training entries and dataset 2 contains a set of calculated features. The dataset with
calculated features consists of all race entries of 2017 to 2019 of a professional female
cyclist. A list of variables of the original dataset is included in the Appendix Table 8.
The entries in dataset 2 represent all races where the cyclist had a key-role in the team
and was expected to end in the top 10. The races where she had a supportive role, and
was therefore not expected to end in the top 10, are excluded. Dataset 2 is used to train
the models on.

Table 1 shows the added variables. The Load-ratio is included because research
shows that the Load-ratio is a good predictor for performance (White 2020) (Dijkhuis
et al. 2017). The categorical results are added because they will be the predicted value.
The race results are divided in a top-10 class (n=58), meaning a good performance and
lower than top-10 class (n=21), meaning a bad performance. The division in top-10
results and <top-10 results is made because cyclists often get price money and UCI
points in large races when they finish in the top-10, which leads to a better world-
ranking. This ranking is eventually determining for the contracts in cycling teams.

Table 1
Added Variables
Name Data type Description
Year Int Year derived from Indexnr. Possible values: 2017, 2018, 2019.
Loadratio float sRPE-1week divided by sRPE-4week.
Race results int Race result of the race at that indexnr.
binresult bool 1 = good performance, 0 = bad performance.

Because outliers play an important role in the PCA, a thorough outlier detection
analysis has been performed. Figure 8 in the appendix shows the boxplots of the
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individual features categorised by the output variable ‘Results’. From the boxplots can
be seen that half of the variables contain observations that fall outside the whiskers of
the boxplot. Some research in the trainingpeak data (the source of the training data)
shows that all observations are legitimate training sessions and that although they are
extreme, the observations are not a mistake. Therefore, the outliers are preserved in the
dataset. Because the sensitivity of PCA to the scaling of the data, it is vital that there are
no outliers in the dataset (Aldehim and Wang 2017). To overcome this problem, the data
is scaled by using the whiskers of the boxplots. This way, the large value is preserved,
but the scaling is more suitable to the data.

After the EDA, the data is subsetted, the final subset is included in Table 2. The final
subset consists of all training variables and the binned race results as the to-be predicted
value.

4.1.1 Variables. To get an idea of what the variables represent, a short description of their
meaning is included in Table 2. In this section however, a more thorough explanation is
given. Every observation in the dataset represents a race where the cyclist was expected
to obtain a top-10 result. All other variables (except the Loadratio) represent the training
done in the weeks before the race. To come to the value of these variables, a weighted
average is taken of all training in 7, 28 and 56 days before the race. The sRPE, already
mentioned in the Related Works section, represents how hard a training session was
using the Borg Scale (Borg 1998). The sRPE-week variables are calculated by taking the
weighted average of the sRPE’s multiplied by the minutes of training as the formula
states below where t = time in days. Multiplying the sRPE by the training time is a
common way to express Training Load.

Et RPE * durationin
t

sRPE =

To see if there are any differences between good and bad performances at first sight,
a density plot is made of all variables separated by the output variable ‘binresult’.
Figure 9 in the appendix shows that there is a visual difference in Zonel-4week and
sRPE-4week. It will be interesting to see if these variables also play an important part in
the prediction of the performance which will be answered in RQ4.

4.2 Experimental Procedure

In this section, the experimental procedure is discussed per research question. The
section includes the algorithms used and the motivation behind the (hyper)parameters.

4.2.1 Models. For the first research question, three algorithms are selected to predict cy-
cling performance, namely: Support Vector Machine, Logistic Regression and Random
Forest.

The logistic regression is used because it is one of the simplest models, while also
being very capable of classifying small datasets. The choice of hyperparameters is as
followed: the max iterations is set to 10000, the solver is set to ’liblinear’ and the
regularization (penalty) is set to 11". Lasso regression (11) is used as for regularization
as it shrinks the less important features to zero, which is ideal when there are a lot of

10
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Table 2

Final set of Variables
Nr. Name Data type Description
1 Loadratio float sRPE-1week divided by sRPE-4week.
2 sRPE-1week  float Sum of sRPE of all training of one week prior to the race.
3 sRPE-4week  float Sum of sRPE of all training of four weeks prior to the race.
4 sRPE-8week  float Sum of sRPE of all training of eight weeks prior to the race.
5 Zonel-lweek float Sum of minutes ridden in zone 1 intensity one week prior to the race.
6 Zone2-1lweek float Sum of minutes ridden in zone 2 intensity one week prior to the race.
7 Zone3-lweek float Sum of minutes ridden in zone 3 intensity one week prior to the race.
8 Zone4-1week float Sum of minutes ridden in zone 4 intensity one week prior to the race.
9 Zone5-1week float Sum of minutes ridden in zone 5 intensity one week prior to the race.
10-14 Zone..-4week float Same as one week variable but then sum of 28 days.
15-19 Zone..-8week float Same as one week variable but then sum of 56 days.
20 Binresult bool 1=Race result <= 10, 0=Race result > 10.

features (Nagpal 2020). The L1 regression is in the sklearn package only supported by
the liblinear solver, so that choice was clear as well.

In addition to the logistic regression, a (linear) support vector machine is trained.
This is done to compare the performance because the logistic regressor has the tendency
to overfit. It will be interesting to see how the performance of the SVM is compared to
the linear regression as they both work on a linear basis but have their own limitations.
An important note on why the SVM is chosen in addition to the logistic regression
model is that the SVM will still work when the number of features is larger than the
number of observations (sklearn 2020). This shows the robustness of the model when
the ratio between observations and features is not optimal.

The final model that is used, is the random forest. In previous studies random
forests show their capabilities of classifying small datasets (Shaikhina et al. 2015)
(Thanh Noi and Kappas 2018). As a random forest has a several parameters and
therefore several tuning possibilities, a GridSearch for the best hyperparameters is
performed. The GridSearch eventually only lead to an overfitting model, which is
to be expected when the risk of overfitting is rather big with the small dataset with
imbalanced classes. Therefore, there is chosen to leave the parameters to the default
settings. One exception is the split criterion, which is set to entropy. Entropy is chosen
because it outperformed the Gini Impurity.

4.2.2 Balancing Methods. Another component that has to be taken into account is
the size of the classes. Since the ‘good performance’ has 58 entries and the ‘bad per-

11
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formance” has only 21 entries, we are dealing with imbalance. This imbalance could
cause the models to have big preference towards the majority class and leads to poor
classification of the minority class (Khoshgoftaar, Gao, and Seliya 2010). To answer
Research Question 3 and to overcome the problems of class imbalance, the classes are
balanced using the following methods: ‘class weighing” and the SMOTE method.

For the weight adjustment GridSearch is used to find the optimal balance between
the classes. The GridSearch is used on each individual model to see if there is a differ-
ence in the optimal class weight between the models. Table 3 shows the values that have
been tried in the GridSearch.

For the SMOTE method (Synthetic Oversampling
Technique), the imblearn APl is used. The SMOTE over- Nr. Weights per class

sampling method generates synthetic data points of the 1 0:100, 1: 1
minority class. This would be beneficial for two issues 2 0:10,1: 1
at once as it gives an even distribution of the classes and 3 0:1,1: 1
at the same time, it increases the size of the dataset. 4 0:1,1: 10
5 0:1,1:100
4.2.3 Principal Component Analysis. To answer RQ3,
PCA is performed. This is done by looking at the ex- Table 3
plained variance of the transformed components. Be- Weights used in GridSearch
fore fitting the Principal Components (PC’s), the out- for Class Balancing.

liers are removed and the data is scaled with Standard-

Scaler. This type of scaling calculates the z-score inde-

pendently per feature. After the PCA is performed, the analysis of the original models
(SVM, logistic regression and random forest) is performed for a second time with the
PC’s. This is done with three different subsets of components namely, 3 PC’s, 6 PC’s, 10
PC’s and 16 PC’s. The four subsets will show what the effect of the transformation on
the different algorithms is.

4.2.4 Feature Importance. After the model performances are known, the feature im-
portance is determinate using the "feature_importance_" option of sklearn of the best
performing model.

4.2.5 Evaluation. Before fitting any model, a baseline is established. For this thesis, the

majority class is used as a baseline as models tend to get towards the baseline when the
model is poorly fitted. For this study, the baseline is (58/79) = 0.734.

# observations majority class

Baseline =
# total observations

The models are evaluated using Leave-one-out (LOO) cross-validation and is op-
timized with Fl-scoring. Although the LOO CV is computationally expensive, it gives
the option to maximize the training set and still have a test set as the model is trained
and tested with each observation. This evaluation metric is therefore often not possible,
but with such a small dataset, it is. The Fl-score as evaluation metric is chosen over
accuracy because of the class imbalance.

precision x recall tp

Flscore = 2 % — = -
precision +recall  tp+ 5(fp+ fn)

12
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Accuracy would give a biased view on the results as the accuracy will naturally be
high if the model just predict the majority class.as the formula shows, the F1-score is the
weighted mean of Recall and Precision and gives a much more nuanced picture of the
results.

4.3 Feature Importance
4.4 Implementation

The results are obtained with the following packages:

. Python version 3.9.1

. Scikit-learn version 0.24.0 for all models, the evaluation metrics, weight
adjustment, GridSearch and PCA

. Imbalanced-learn version 0.7.0 for SMOTE

®  Seaborn version 0.11.1 and Matplotlib version 3.3.3 for visualization of the
results

5. Results

This section presents the results obtained by following the methodology listed above.
The results are listed per research question and afterwards, answered in the discussion.
Finally, the main research question will be answered in the discussion based on the
answers of the sub-questions.

5.1 Model Performance

The first RQ states: Which model is best suited when evaluated by the F1-score?. The models
that are tested are logistic regression, a support vector machine and a random forest.
All models are tuned with the hyper-parameters mentioned in the Method section. The
outcome of these models is shown in Table 4.

The results in the table show that the ran-

dom forest achieved the highest Fl-score (F1 = Model Fl-score
0.85), followed by the logistic regression (F1 = Logistic Regression 0.84
0.84) and lastly, the SVM (F1 = 0.79). To recall Linear SVM 0.79
from the Method section, the baseline is 0.734. Random Forest 0.85
From this we can conclude that all models per-

form better than the baseline. To see how the Table 4

models predict the observations, a confusion Fl-score of simple models

matrix is placed in the appendix. The first section

of Table 9 shows the predictions of the models in a Confusion Matrix. These results show
that the Precision and Recall for the 1-class, the "good performance" class is very good.
The Precision and Recall is much lower for the 0-class, the "bad performance" class.

5.2 Balancing Classes

As mentioned earlier, the dataset is imbalanced with 58 observations in the "good
performance” class and 21 observations in the "bad performance" class. The results

13
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F1-score
Model No Balance Weights SMOTE
Logistic Regression 0.84 0.85 0.68
Linear SVM 0.79 0.85 0.58
Random Forest 0.85 0.88 0.79

Table 5
F1-score of models with weight adjustment and SMOTE

in the previous section showed that the models have a slight preference towards the
majority class, which is to be expected. The balancing methods as explained in the
method section try to account for this behaviour. Table 5 shows the results for both
the class weights and the SMOTE balancing. The models without balance are included
as well for comparison.

5.2.1 Weight adjustment. The results show that balancing the classes leads to an increase
in performance of all models. The logistic regression and SVM had a F1-score of 0.85 and
the random forest had a F1-score of 0.88. The weights that were chosen by GridSearch,
giving the highest F1-score were the following:

o Logistic Regression: class 0: 1, class 1: 100

*  Support Vector Machine: class 0: 1, class 1: 10 0:1, 1:100 (both provided the
same results)

o Random Forest: class 0: 100, class 1: 1

These weights are notable because these weights are almost the opposite of each
other. Intuitively, one would expect that the weights would be adjusted towards the
smaller class. For the random forest, that is indeed the case, while the SVM and the
logistic regression laying even more weight on the majority class increased the F1-score.
The abnormality of this choice is confirmed in the Confusion Matrix (Table 9). Before
adjustment of the weights, the models already had a preference for the majority class
and after adjusting the weights, this preference became even stronger. The eventual
Fl-score is still higher than the baseline because it takes the mean of the two classes.
Unfortunately, it does not give the desired effect of balancing the classes evenly. This is
probably be the reason that the random forest without feature selection and with weight
adjustment is the best performing model, for this model it is possible to make a better
classification of the minority class with the weight adjustment.

5.2.2 SMOTE. Although the SMOTE technique was promising, the results are less
impressive. Only the random forest performs better than the baseline with an F1-score
of 0.79. The SVM (F1 = 0.58) and the logistic regression (F1 = 0.68) are not able to
make better predictions with the addition of the synthetic samples. The random forest
is handling the synthetic samples slightly better, although still performing worse than
with adjusting weight or without balancing the classes at all. To find the reason of these
outcomes, we again look at the confusion matrices.
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Figure 3
Plot of new SMOTE samples in contrast with original data

Figure 3 shows a scatterplot of two variables of the thesis dataset before and after
the SMOTE observations are added. The plot on the right shows that, although centered
in the middle, the newly created observations appear logical. Because of the new obser-
vations created by SMOTE, there is no majority class anymore. The logistic regression
and the SVM are now able to better classify the 'bad performance’ class, which was
previously the minority class which can be seen in the Confusion Matrix in the appendix
in Table 9. The reason that the Fl-score is not higher, is that the classification of the
"top-10" class, has become more difficult. This leads to an Fl-score of both models
that is worse than the baseline. For the random forest, the same reasoning applies to
some extent, but this model is able to make a much better classification of the 'good
performance’ class. Although the SMOTE technique led to a decrease of performance of
the models, it might have given a more realistic picture of the model performance by
taking away the possibility to just take the majority class. As with the conclusion of the
previous RQ, the models would benefit from more data.

5.3 Principal Component Analysis

As the variables share part of their information, the information sRPE-1week contains is
also present in sSRPE-4week for example, it is expected that the features share variance.
Therefore, PCA is performed to get insight in how much variance is shared and if the
transformation of features into principal components improves the performance of the
models.

Figure 4 shows the variance explained by the principal components. The figure
shows the typical asymptotic shape of explained variance with a stabilisation from 13
components. On the basis of the variance explained by the components, different sets
of components are chosen to train the models on. For the analyses are 3, 6, 10 and 16
components used to see if there is any difference in performance.

Table 6 shows the F1-score per set of selected components. In addition to the table,
figure 5 shows the F1-score for every set of PC’s. Together, the table and the graph give a
complete outline of what PCA does for the performance of the models. For the random
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F1-score
Model 3PCs 6PC’s 10PC’s 16PC’s
Logistic Regression 0.85 0.83 0.84 0.84
Linear SVM 0.85 0.85 0.86 0.87
Random Forest 0.79 0.79 0.82 0.77

Table 6
F1-score of models with different sets of Principal Components
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Figure 4
Variance explained by principal components

forest for example, performance is not better with PCA, the maximum F1-score is 0.835
with four PC’s used. For the SVM, performance is better with PCA, with a maximum F1-
score of 0.867 with 15 components used. For the logistic regression, the highest F1-score
is 0.854, which is equal to the performance without PCA.

What is notable, is the varying performance of the random forest. This is probably
due to the nature of a random forest that is build from different sets of decision trees
that show divided outcomes. The SVM on the other hand shows a very clear image. The
model clearly benefits from the transformation of the data to Principal Components.
This is probably due to two things, on one side, the data is scaled, which makes it easier
to group the observation, and on the other side, by removing the variance, it becomes
easier to linearly separate the data. For the logistic regression there is not much to say
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Figure 5
Fl-score of different sets of PC’s

other than that the performance did not improve, the table and figure do not show any
other insights.

Because the risk of imbalance is also the case for the classification with PC’s, a
Confusion Matrix is added to the appendix to see how the classifiers predicted the
observations. Table 10 in the appendix shows the Confusion Matrices with the same
sets of components as Table 6. The confusion matrices shows that although the F1-
score was better than the baseline, the logistic regression and the SVM predicted all
observations as the majority class when using 3 PC’s. As there are more PC’s added, the
balance gradually returns slightly in the predictions, although still heavily in favour of
the majority class.

This is an indication that the models might perform better when adding the weights
that were found in the previous section on class balancing. Figure 6 shows the F1-score
of the balanced models. The graph shows indeed that there is an improvement of the F1-
score when class weights are adjusted. The SVM has the highest F1-score of 0.872 when
13 components are used, the random forest achieved a highest F1-score of 0.854 with 7
components used and the logistic regression has a highest F1-score of 0.852 which is a
slight decrease of performance with 11 components used. These results correspond with
the results that were found in the previous section on class weights where the logistic
regression did not benefit either from the adjustment of class weights.

One thing that is notable is that the adjustment of class weight did lead to a higher
performance with less components used. This means that correctly using class weights
makes dimensionality reduction possible while increasing or maintaining performance
of the models. Although the performance of the SVM increased by transforming the data
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Figure 6
F1-score of different sets of PC’s with balanced models

into principal components, the random forest with adjusted class weights still achieved
a higher F1-score of 0.880.

5.4 Feature Importance

As the random forest is the best performing model both with and without class bal-
ancing, this model is used to calculate the feature importance. As the random forest is
trained on entropy, the feature importance is calculated with Information Gain (IG).

Figure 7 shows the Information Gain per feature. From the figure can be concluded
that Zonel-1week is by far the feature with the highest IG. Other features that have a
relatively high IG are Zonel-1week, Zonel-8week, Zonel-1week, sRPE-4week, Zone2-
4week and sRPE-8week. When looking at the density plots of the features in the ap-
pendix (9), the density plot show confirming results. When compared with the other
plots, the plots of the features with the highest IG have distributions that differ from
each other while the others show a more similar distribution.

To be able to see if the selected features differ in their mean value per output
class, Table 7 shows the information gain and mean values of both output classes for
the important features. From this table we can conclude that for all zone 1 variables,
the mean value of the good performances is higher than the mean value of the bad
performances. That may indicate that more training in zone 1 is beneficial for the
performance but more research is needed. These insights give some guidance in what
athletes and their coaches could focus on in preparation for an important race.

6. Discussion

The goal of this research was to see to what extend it was possible to predict cycling
performance on the basis of training variables. This is done by looking at different
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Figure 7

Information Gain per Feature

Cycling Performance

F1-score
Feature IG Intop-10(1) Out of top 10 (0)
Zonel-4week 0.153 2050.0 1927.6
Zonel-8week 0.093 3907.2 3889.3
Zonel-lweek 0.091 504.0 464.0
sRPE-4week  0.081 49767.7 45891.9
Zone2-4week  0.080 841.5 778.8

Table 7

Information Gain and Mean Value of top-5 features

sub-questions that each help to answer the main question. In this section, the research
questions are answered and the findings in this study are placed in context with the
existing literature.

6.1 Research Question 1

The first research question states: Which model is best suited when evaluated by the F1-
score?. The models that are tested are a logistic regression, SVM and random forest.
When looking at the results, the Fl-scores are 0.84, 0.79 and 0.85 respectively for the
models without balance. All models did perform better than the baseline of 0.734.
Based on these results, the random forest is best suited to predict race performance.
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Especially because the results showed that the SVM and logistic regression showed a
clear preference towards the majority class.

6.2 Research Question 2

The second question states: What is the effect of balancing the classes and which method is
best suited for that? The methods that are tested are weight adjustment and SMOTE. Overall,
the adjustment of class weights shows an increase of performance of all models with the
random forest again achieving the best F1-score of 0.88. Although this method showed
an increase in performance for all models, the confusion matrix showed that the class
weights of the logistic regression and SVM led to even more emphasis on the majority
class. This means that this approach works counterproductive for these models.

The SMOTE led to a decrease in performance with only the random forest still
performing better than the baseline. This is surprising as the study of (Picek et al. 2019)
showed that SMOTE outperformed the class weights. One of the reasons why this is not
the case for this dataset is that the size is too small.

To answer RQ2: the effect of the balancing methods is mixed; the class weights lead
to an increase in performance but only laid more emphasis on the minority class for the
random forest and the SMOTE leads to a decrease in performance.

6.3 Research Question 3

The third research question states: To what extend does Principal Component Analysis
contribute to the performance of the models?. The results showed that PCA had varying
effects on the different models. For the random forest, the PCA was not beneficial while
the performance of the SVM increased by the PCA. When looking back at the literature
from the Related Works section, this finding is not surprising. In the article (Reddy et al.
2020) already stated that PCA was less helpful for a random forest. They also stated that
the classifiers with PCA performed better than the classifiers without PCA. This thesis
does not confirm these results but that could be due to the fact that, again, the size of
the dataset was limited as they also found that when the size is too small, PCA had a
negative impact. In that way, the outcomes of that study are confirmed.

The results also showed that class balance helped with the PCA and especially
made it possible to maintain a high F1-score while using less PC’s. To give a concluding
answer on this question: the PCA is beneficial for the SVM while it did not increase the
performance of the logistic regression and the random forest.

6.4 Research Question 4

The fourth research question states: Which features are important in the prediction of perfor-
mance?. The features that were found as important were; Zonel-4week, Zonel-8week,
Zonel-lweek, sRPE-4week, Zone2-4week and Zone2-4week. The findings show that it
is important to have a good base in zone 1 as zone 1 of all weeks is selected.

In the Related Works section, the article of Dijkhuis et al. discussed the features that
were important in the prediction of running injury based on Training Load. Based on
these findings, Loadratio was also included in this dataset. Table 7 shows that Loadratio
has an information gain of 0.05, which is quite low. This finding did not correspond
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with the findings of Dijkhuis et al as well as the other features that were selected in that
paper. That could be because injury prediction is different from performance prediction
or because the datasets are simply different.

6.5 Main Question

The first three sub-questions each explored ways to find the best method to answer the
main question: To what extent can race performance be predicted in cycling, based on training
load?. The eventual answer is: to quite some extend. The random forest with class
weight balancing gave the best F1-score of 0.88, which is well above the baseline. The
other models performed above the baseline as well but seemed to keep their preference
towards the majority class, which makes the random forest better suited to the situation.

6.6 Implications, Limitations and Future Research

The results of this study are quite significant when compared with the performances of
the studies of Dijkhuis et al. and Orie et al.. This shows that it is to some extend possible
to make predictions about race performance based on Training Load, which would be
very helpful for professional cycling team as they could base their team setup on these
results.

However, this study only looked at features related to Training Load. As stated
in the research of (Philips and Hopkins 2020), Training Load and the features are
intertwined with other aspects that impact race performance such as team work. A rec-
ommendation for future research is to include more external variables or to standardize
a performance protocol. This makes a separation between the real-life setting with real-
life results and a lab-study where the isolated effect of only training variables can be
measured.

Another limitation of this study was the size of the dataset. As this data is very
specific for one person, the predictions will be specific as well. This makes it hard to
generalize the results and say something about performance in general based on TL
and eventually make a training schedule based on these findings. A recommendation
for future research is to collect more data of this cyclist as well as data of other female
cyclists to make the results more generalizable. Another recommendation that would
be helpful for riders and their coaches is to do more research about the importance of
the features. This study has given some indication of what features are important for the
prediction of injuries, but research in how to optimize these parameters would probably
also optimize performance.

7. Conclusion

This research has shown different techniques to make predictions on a small dataset in
order to predict cycling performance in races, based on training variables. In order to
do that, a logistic regression, support vector machine and random forest are trained.
Secondly, two balancing methods were tested; an ‘in-model” class weight adjustment
and SMOTE. Thirdly, PCA was performed to see if dimensionality reduction led to an
increase of performance. Lastly, the important features were identified to help athletes
and coaches in optimizing training schedules.
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The baseline for this research was the majority class, which was 0.734 and the
models were evaluated by the Fl-score with leave-one-out cross-validation. The best
performing model was the random forest with class weight adjustment with an F1-
score of 0.880. Overall, the models did not benefit from SMOTE and only the random
forest benefited from the class weight adjustment. When the data was transformed to
PC’s, only the SVM showed an increase in performance with an Fl-score of 0.872. The
features that were found important were zone 1 of all weeks, sRPE-4week and Zone2-
4week. It would be interesting to see if these results still hold up when there is more
data available so that the results become more generalizable.

The results of this study can be used as a guide for classification of small datasets.
For the sport-related field the implications of the results are not significant but they
show that the set of features selected by the random forest might indicate that they can
be important for predicting performance. Future research could show what the optimal
value for these variables is in order to be classified as a top-10 result. These values can
then be used as a goal to plan a training schedule around.
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Appendix
Table 8
Original Variables, sSRPE = session Rate of Perceived Exertion
Nr. Name Type Description
1 Indexnr Int Days from the starting point. 0 = 01-11-2011
2 sRPE-1week float  Sum of sRPE of all training sessions of one week prior to the race.
3 sRPE-4week float  Sum of sRPE of all training of four weeks prior to the race.
4 sRPE-8week float  Sum of sRPE of all training of eight weeks prior to the race.
5 Zonel-lweek float  Sum of minutes ridden in zone 1 intensity one week prior to the race.
6 Zone2-1week float  Sum of minutes ridden in zone 2 intensity one week prior to the race.
7 Zone3-1week float  Sum of minutes ridden in zone 3 intensity one week prior to the race.
8 Zone4-1week float  Sum of minutes ridden in zone 4 intensity one week prior to the race.
9 Zone5-1week float  Sum of minutes ridden in zone 5 intensity one week prior to the race.
10-14 Zone..-4week float Same as one week variable but then sum of 28 days.
15-19  Zone..-8week float Same as one week variable but then sum of 56 days.
20 Adj. perf. float  Performance adjusted by Race variables.
21 Dist-tolast30 float  Distance in km until the last 30 min. of the race.
22 Dist-inlast30 float  Distance in km in last 30 min. of the race.
23 KJtolast30 float K] spent until last 30 min. of the race.
24 KJinlast30 float K] spent in last 30 min. of the race.
25 HMtolast30 float  Altimeters until the last 30 min. of the race.
26 HMinlast30 float  Altimeters in the last 30 min. of the race.
27 KJperKMtolast30 float K] spent per km until last 30 min. of the race.
28 KJperKMinlast30 float K] spent per km in last 30 min. of the race.
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Boxplots per output class before outlier removal
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