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Abstract 

Recommender systems are extensively used to recommend songs to users. In this research, a 

hybrid two-stage recommender system for Spotify is constructed. The dataset contains users, songs, 

song features and play counts. To generate recommendations, clusters of similar songs are generated. 

Within the cluster, similar songs are found. A user’s rating for a certain song is predicted by the rating 

of similar songs. Subsequently, songs with a high prediction value are recommended (Ahuja, Solanki 

& Nayyar, 2019). 

This thesis researches to what extent feature engineering techniques affect cluster similarity, 

as well as the performance of recommendation systems. To do this, a number of feature engineering 

techniques are used before clustering. The feature engineering methods that are discussed are feature 

selection, dimensionality reduction and missing data imputation. 

This study concludes that feature selection and dimensionality reduction improve cluster 

similarity, as well as model performance. In contrast, missing data imputation leads to lower cluster 

similarity. The effect of data imputation on performance cannot be determined with certainty, since 

the test sets are dissimilar. However, data imputation is still preferred since it improves the naïve 

baseline to a greater extent than the degree to which the standard model outperformed its naïve 

baseline. Further, the method correctly deals with missing data. This results in higher robustness 

among results. 

 

Keywords: recommender system, content-based, item-based collaborative filtering, hybrid, 

clustering, feature engineering, feature selection, dimensionality reduction, missing data imputation 
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Data source/Code/Ethics 

The dataset that is used in this thesis consists of two separate datasets, which will be merged. 

The first dataset concerns a playlist by Ansari (2020), which is obtained from Kaggle. It is stated in 

the license that the data may be shared and adapted, as long as attributions are made. However, the 

data may not be used for commercial use. 

The second dataset is a subset of the Million Song Dataset (Bertin-Mahieux, Ellis, Whitman 

& Lamere, 2011), which is obtained from Kaggle (Banerjee, 2018). It is mentioned that the data may 

be distributed and modified. Additionally, it is allowed to use the data for commercial purposes.   
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1. Introduction 

1.1 Context 

Spotify is the largest streaming service in the world (Pérez-Marcos & Batista, 2017). It has 

over 75 million active users, most of whom are constantly searching for new content. 

Recommendation systems strongly encourage the discovery of content. A recommendation system 

(RS) is a method that searches through a large volume of information to provide customers with 

personalized content (Isinkaye, Folajimi & Ojokoh, 2015). Most recommender systems suggest songs 

based on user feedback or content features. However, researchers argue that these approaches could 

be combined by generating clusters based on content (Jin & Han, 2020). Subsequently, recommended 

songs will be found within the cluster. This approach is expected to decrease the computation time 

and improve model accuracy (Ahuja et al., 2019). 

Feature engineering methods are expected to improve the similarity of songs within clusters 

(Panda & Misra, 2021). As a result, the accuracy of recommendations is expected to increase. Feature 

engineering techniques are methods such as feature selection, dimensionality reduction and missing 

data imputation. The similarity of clusters that are constructed with and without feature engineering 

techniques will be discussed. Additionally, it will be discussed to what extent feature engineering 

techniques affect performance.  

 

1.2 Relevance 

This research contributes to the literature in multiple ways. From a business perspective, this 

topic is relevant for Spotify’s IT department and shareholders. IT employees could build 

recommendation systems using the most relevant feature engineering techniques. Feature engineering 

techniques are expected to increase the quality of recommendations. High-quality recommendations 

will lead to relevant user content. The company benefits from relevant content, since this will result 

in higher customer satisfaction and greater user engagement (Rubtsov, Kamenshchikov, Valyaev, 

Leksin & Ignatov, 2018). Increased customer satisfaction and engagement will lead to customers 

being loyal to the music platform, which is necessary for customer retention (Millecamp, Htun, Jim 

& Verbert, 2018). Ultimately, retaining customers will result in more profit, which is the main goal 

for shareholders (Lozic, Vojcovic & Milkovic, 2020).  

From a scientific perspective, this study explores the nature of clusters among feature 

engineering techniques. This has not been discussed in earlier literature. Further, this research 

provides an evaluation of the effect of cluster similarity on the performance of a recommendation 

system, which is also lacking in the literature. In this study, performance is measured by the accuracy 

of the results. Results on cluster similarity and model performance could be used for future research. 



8 

 

1.3 Research questions 

In this thesis, the following research question is answered: To what extent is cluster similarity 

affected by feature engineering techniques and to what degree do these techniques affect the 

performance of a clustered recommender system for Spotify? The research question is answered by a 

two-stage analysis. First, song clusters are generated based on song features. The following sub-

questions follow from the first stage of the research question: 

1) To what extent does feature selection affect cluster similarity? With feature selection, a subset of 

most informative features is selected. 

2) To what extent does dimensionality reduction affect cluster similarity? Dimensionality reduction 

transforms features into a lower number of new features, while aiming to retain predictive power. 

3) To what extent does missing data imputation affect cluster similarity? A missing data imputation 

model will be compared to the standard model, in which missing data is discarded. Secondly, the 

performance of the recommender system will be evaluated within each cluster. The second stage of 

the research question leads to the following sub-questions: 

4) To what extent does feature selection affect the performance of the recommender system?  

5) To what extent does dimensionality reduction affect the performance of the recommender system?  

6) To what extent does missing data imputation affect the performance of the recommender system?  

 

1.4 Findings 

This study concludes that feature selection and dimensionality reduction improve cluster 

similarity. Further, these techniques result in higher accuracy. In contrast, the imputed model leads 

to aggravated similarity. This may be due to the fact that the model was unable to impute plausible 

values. Further, the imputation model seems to perform better than the standard model. However, this 

cannot be concluded with certainty, since these models operate with different datasets. 

 

1.5 Structure 

This thesis is structured in the following manner. In the second chapter, related work is 

discussed. The methodology and experimental setup are thoroughly explained in chapter three. This 

chapter also includes a description of the hyperparameter tuning process, which means that the 

optimal settings for model parameters are found. Hyperparameter values and model results are 

demonstrated in chapter four. Chapter five provides context on the results. Lastly, chapter six presents 

a general conclusion. 
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2. Background 

2.1 Recommender systems  

In the past decades, many individuals and companies have attempted to improve 

recommender systems. Generally speaking, a recommender system (RS) is a system that suggests 

relevant items to users (Zhou, Xu, Li, Josang & Cox, 2011). A recommender system is considered as 

a tool that could be used for dealing with large amounts of items (Zhou et al., 2011). These items are 

the products that are recommended, such as songs or movies. Three recommender methods could be 

utilized; the traditional content-based method, a collaborative filtering method or a hybrid method, 

which combines the latter (Aggarwal, 2016).  

A content-based (CB) recommender system recommends items based on music that is similar 

to songs that the user has already listened to (Aggarwal, 2016). Thus, songs are solely recommended 

based on their content, instead of their popularity (Chemeque-Rabel, 2020). However, a so-called 

‘cold start’ problem occurs, because recommendations are only be reliable when sufficient 

information on preferences is available. Further, many possibly interesting items are not revealed, 

since the method does not tend towards community (Thi Do, Nguyen & Van Nguyen, 2010).  

The collaborative filtering-based (CF) approach does take the community into consideration. 

CF can be item-based or user-based (Bhatnagar, 2017; Wei, Ye, Zhang, Huang & Zhu, 2012; Yadav, 

Shukla, Tripathi & Maurya, 2021). The item-based approach predicts the rating per user per song by 

the average rating of similar songs. This approach is generally preferred, due to its ability to quickly 

react to changes in ratings (Kużelewska, 2020). In contrast, the user-based approach determines the 

predicted rating per user per song by calculating the average rating of similar users (Xie et al., 2012). 

An important drawback of the CF approach is the ‘scalability problem’, which implies that the entire 

database must be searched to compute similarities among users. Hence, computation time increases 

linearly when the size of the dataset increases (Sánchez-Moreno, Gil González, Muñoz Vicente, 

López Batista & Moreno García, 2016).  

A hybrid method combines the CB and CF approach. As a result, the disadvantages of 

individual methods are diminished. A commonly used hybrid model clusters songs based on content 

and generates recommendations based on collaborative filtering (Li et al., 2017). This model 

improves computation time as well as accuracy, since the community is regarded. However, hybrid 

models are complex, which may diminish interpretability (Thuan & Puntheeranurak, 2014).  

Researchers agree that every method has advantages and disadvantages. CB approaches suffer 

from a cold-start problem. Also, the method does not regard preferences of the community. CF 

models imply scalability problems. The hybrid method is generally preferred since it combines the 

best of both approaches.  
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2.2 Reoccurring issues 

A major issue in the field of recommender systems is the scalability problem. Recommender 

systems generally suffer from highly dimensional data, which slows down the recommendation 

process. According to Jin and Han (2020), this problem could be solved by creating clusters of similar 

items. Similar songs will then be found within their cluster. This method reduces the running cost of 

high dimensional data. Clustering also improves generalization, which subsequently leads to higher 

accuracy (Ahuja et al., 2019; Kim, Kim, Park, Lee & Lee, 2007; Liao & Lee, 2016; Sarwar, Karypis, 

Konstan, & Reidl, 2001). In contrast, other researchers argue that clustering decreases the quality of 

recommendations, since their nearest neighbors may not be in the same cluster (Aggarwall, 2016; 

Kużelewska, 2020). Thus, some predictive power may be lost. Several researchers solves this issue 

by using a two-stage hybrid recommender system with fuzzy clusters (Puntheeranurak & Tsuji, 2007). 

Fuzzy clustering implies that each item belongs for a certain extent to each cluster. Therefore, the 

problem argued by Aggarwall (2016) and Kużelewska (2020) is no longer valid.  

Another issue concerns the implicit feedback problem. To determine similarity among users 

or items, explicit user-feedback is required (Sánchez-Moreno et al., 2016). However, when 

information on actual preferences is lacking, preferences must be estimated (Najafabadi, Mahrin, 

Chuprat & Sarkan, 2017; Pacula, 2010). Music recommender systems often use the play count of 

songs, which indicates how many times a person listened to a song (Lee & Lee, 2015). Transforming 

the variable is helpful since play counts are difficult to compare. Namely, a larger nominal play count 

does not necessarily imply a larger preference (Hu, Koren & Volinsky, 2008). For instance, a might 

listen to his playlist on repeat, while b listens to music occasionally. Additionally, play counts are 

positively skewed, since most songs are infrequently played. This could affect the quality of 

recommendations (Pacula, 2010). The representativeness of preferences could be solved by 

converting implicit ratings to relative play counts. The relative play count indicates how much a 

person likes a specific song, compared to other songs. This allows for comparing preferences among 

different people (Jawaheer, Szomszor & Kostkova, 2010). Skewness could be diminished by 

converting an implicit rating to a binary variable. In this case, 1 symbolizes a positive score (liking 

the song) and 0 represents a negative score (not liking the song). A disadvantage of converting 

implicit feedback to two classes is that information the amount of appreciation is lost (Pacula, 2010).  

 

2.3 Feature engineering 

Clustering songs based on song features improves efficiency and accuracy. However, time 

and generalization issues could be further reduced by applying feature engineering methods on data 

before clustering. Two main feature engineering methods are feature selection and dimensionality 

reduction (Panda & Misra, 2021). Researchers argue that feature engineering techniques decrease 
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computation costs and improve the quality of recommendations (Ahuja et al., 2019). However, 

research on the effect of feature engineering techniques on cluster similarity, as well as the accuracy 

of clustered recommender systems, is lacking. A special feature engineering technique is missing data 

imputation. This method is addressed separately, since applying data imputation techniques on all 

models could be too computationally expensive. 

Feature selection uses a subset of most informative features. This is expected to improve 

model performance. (Ndung'u, Kamau & Mariga, 2021). The method is used because several features 

are usually correlated, meaning that it is inefficient to include all features in the analysis (Ndung’u et 

al., 2021). Further, the method reduces noise in the data. This is expected to improve generalization, 

which will improve performance. The most widely used feature selection methods are the filter and 

the wrapper strategy (Panda & Misra, 2021). In the filter method, features are ranked by importance 

based on a chosen statistic (Afoudi, Lazaar & Al Achhab, 2019). In contrast, the wrapper strategy 

measures all possible combinations of features and returns the optimal set of values (Panda & Misra, 

2021). The wrapper strategy is more accurate than the filter strategy (Ndung’u et al., 2021). However, 

the wrapper method is more computationally expensive, since it regards dependencies between 

features (Panda & Misra, 2021). The choice of method therefore depends on whether the possibly 

higher accuracy is actually worth its higher computational cost. Researchers have not yet determined 

the best feature selection strategy for clustered recommender systems. 

Dimensionality reduction aims to decrease the number of features in the data, without losing 

predictive power (Lü et al., 2012). This reduces the computational cost of the model (Panda & Misra, 

2021). Further, the model is expected to improve generalization. Dimensionality reduction methods 

can be linear or nonlinear. Linear methods are easier to use and easier to interpret than nonlinear 

methods. Also, they are less computationally expensive. Nguyen and Holmes (2019) argue that 

nonlinear methods generally perform better. In contrast, Van der Maaten, Postma and Van den Heerik 

(2009) argue that nonlinear methods are often not capable of outperforming linear methods. Examples 

of linear dimensionality reduction techniques are Principal Component Analysis (PCA) and Singular 

Value Decomposition (SVD). PCA is generally preferred due to its simplicity and its ability to create 

new and uncorrelated variables (Langensiepen, Cripps & Cant, 2018; Van der Maaten et al., 2009). 

Furthermore, the method performs well with continuous data (Nguyen & Holmes, 2019). In contrast, 

commonly used nonlinear dimensionality reduction techniques are Isomaps and Kernel PCA (KPCA) 

(Nguyen & Holmes, 2019).  

Datasets generally include missing data (Panda & Misra, 2021), which can be solved by data 

imputation methods. Missing data imputation is important because it ensures that all observations are 

preserved (Panda & Misra, 2021). This leads to better generalization. A large disadvantage of missing 

data imputation is that imputed datasets are large, which results in computationally expensive models 
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(Panda & Misra, 2021). To address this issue, missing data could be handled by deleting all 

incomplete observations. This approach is called listwise deletion. Since less observations complicate 

generalization, the predictive power of the model is expected to decreases. Researchers argue that 

listwise deletion should only be used when data is missing at random (MAR), which means that all 

data points are equally likely to be absent. In contrast, listwise deletion may lead to selection bias 

when data is missing not at random (MNAR), which means that a specific situation causes data to be 

missing. MNAR data must be treated with caution, since no method can fully account for this type of 

missingness. Nevertheless, it is argued by James, Witten, Hastie and Tibshirani (2021) that multiple 

imputation is preferred. Multiple imputation imputes the average of a number of plausible values. 

This method is expected to lead to the most robust results. However, listwise deletion may still be 

beneficial for large MNAR datasets, since listwise deletion largely decreases the computation cost 

(Panda & Misra, 2021). It is relevant to detect to what extent data multiple imputation and listwise 

deletion affect performance. Namely, if the robustness and accuracy of the results is not 

compromised, the listwise deletion method is preferred. 
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3. Methodology and experimental setup 

This chapter contains a thorough explanation of the methodology that is used for this study. 

Section 3.1 elaborates on the choice for a two-stage hybrid model. Section 3.2 describes which dataset 

this study uses. In section 3.3, pipelines for the standard model and feature engineering models are 

demonstrated. Section 3.4 discusses the process of hyperparameter tuning for each model separately. 

Algorithms and packages are discussed in section 3.5. 

 

3.1 Hybrid recommender system 

Researchers argue that content-based (CB), collaborative filtering-based (CF) and hybrid 

recommender systems have both advantages and disadvantages. Nevertheless, hybrid systems are 

generally preferred, because of their ability to combine content features with ratings. In this study, a 

two-stage hybrid model is constructed. First, songs are clustered based on their content. Therefore, 

clusters contain songs with similar song features. Subsequently, a CF item-based approach is used 

within each cluster. The model recommends songs that are similar to other songs which the user rated 

positively (Cintia Ganesha Putri, Leu & Seda, 2020). This standard recommender system is compared 

to models that use feature engineering methods before clustering songs. In this manner, it can be 

evaluated to what extent feature engineering techniques affect cluster similarity and model 

performance. The feature engineering techniques that are used in this study are feature selection, 

dimensionality reduction and missing data imputation. Normally, missing data imputation is applied 

on all models, since this is expected to increase the robustness of the results. However, the imputed 

dataset increases computation time to an extent that it would be impossible for a private computer to 

process the data in a feasible amount of time. For this reason, missing data imputation is performed 

as a separate model. It is concluded whether missing data imputation is necessary for the robustness 

of results, as well as retaining accuracy. 

 

3.2 Dataset description 

To answer the research question, two datasets are combined. The first dataset is named the 

‘Spotify Audio Features Hit Predictor Dataset’, which is obtained from Kaggle (Ansari, 2020). The 

total set contains 35,860 unique song titles. Ansari (2020) has combined song titles, which originate 

from his own playlist, with audio features, which are extracted from Spotify’s Web API. This so-

called ‘song dataset’ consists of 35,860 rows and 19 columns. Each row indicates one song and each 

column contains information about that song. The second dataset is a subset of data that was published 

for the Spotify Recommender Challenge (Banerjee, 2018; Bertin-Mahieux et al., 2011). Each row 

contains a user ID, a song ID and their corresponding title, album, artist, play count and release year. 
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This so-called ‘user dataset’ contains 2,086,946 rows and 7 columns. The user dataset includes 76,353 

unique users and 10,000 unique songs. The data in the user dataset is combined with song features 

originating from the song dataset. This approach is chosen because implicit feedback is only available 

for songs in the user dataset. This feedback is necessary for generating item-based recommendations.  

 

3.3 Pipelines 

The pipelines for feature engineering models slightly differ from the pipeline of the standard 

model. Therefore, model pipelines are discussed separately. Section 3.3.1 thoroughly explains the 

pipeline for the standard model. Section 3.3.2 describes the methodology for the feature selection 

model. The dimensionality reduction model is described in section 3.3.3. Finally, section 3.3.4 

compares the methodology for the data imputation model. 

 

3.3.1 Standard model 

Figure 1 displays the pipeline for the standard model. This model performs as a baseline, since 

feature engineering models are compared to this model. However, the standard model is no naïve 

model which simply predicts the majority class. The model is constructed in such manner that both 

item features and ratings are used to predict whether or not a person will like a song. 

Figure 1 – Pipeline standard model 

 

The process of building a recommender system starts with two individual datasets. The user 

dataset is combined with data from the song dataset, because the merged dataset allows for combining 

a CB and CF approach. After merging the data, a train-test-split is created. For this purpose, data from 

25 per cent of the users is exported as test set. These users are randomly selected. The remaining of 

the data serves as train set. Subsequently, a train-validation-split is performed on the train set. 
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Therefore, data from 33 per cent of the users is exported as validation set. Thus, the complete set of 

data consists of a train set, a validation set and a test set. The validation set and the train set are also 

exported. Further modifications on the data, such as selecting features for feature selection, are 

executed on each set for each model separately. The train set is used for training the model. Further, 

the performance on the train set is compared to performance on the test set, which allows for checking 

the validity of the results. Namely, if the performance on the train set is substantially higher than the 

performance on the test set, it is likely that the model is overfitted. In contrast, a higher test 

performance implies selection bias. The validation set is used for model selection and hyperparameter 

tuning. Furthermore, the test set is only used to compare results of different models. Using splits 

allows for obtaining unbiased results.  

The song dataset and the user dataset do not contain any missing values. However, missing 

data on song features emerge when songs in the user dataset are not in the song dataset. One way to 

deal with this is by listwise deletion, which implies that all observations that contain missing values 

are deleted. The dataset that remains is called the ‘complete cases dataset’. Although the merged 

dataset contains 10,000 unique songs and 76,353 unique users, listwise deletion leads to a combined 

dataset of merely 2,449 unique songs and 71,196 unique users. For the standard model, the dataset 

with listwise deletion is used. This approach is chosen because using the imputed dataset for each 

model is too computationally expensive to perform in a reasonable amount of time. However, it must 

be noted that missing data in the complete cases dataset is missing not at random (MNAR). Namely, 

data is missing when songs are not in the song dataset. Thus, preferences of Ansari (2020) cause the 

data to be missing.  

After filtering for complete observations, the numeric variable play_count is recoded into a 

relative feedback variable (rel_rating). Recoding is performed because nominal ratings fail to 

represent preferences. Jawaheer et al. (2010) argued that relative feedback allows for comparing 

ratings among people. The column names, descriptions and feature types of all variables can be found 

in figure 13 in appendix I (Ansari, 2020).  

Additionally, variables that describe characteristics of songs are normalized from 0 to 1. This 

is necessary because clustering song features requires these features to have equal distributions. Most 

variables already range from 0 to 1, however, the variables sections, key, loudness, duration_ms and 

tempo work with different ranges. Figure 14 in appendix I illustrates the distribution of song features 

after normalizing. 

The first step of the hybrid analysis is to cluster songs by the K-means clustering algorithm. 

Clustering is performed since this reduces the computation cost of the analysis. Namely, only part of 

the dataset needs to be searched (Ahuja et al., 2019). Additionally, the quality of recommendations is 

expected to improve, since clustering simplifies generalization (Kim et al., 2007). The K-means 



16 

 

clustering algorithm is used because it is an efficient and interpretable clustering method, which 

performs well with large datasets (Ju & Xu, 2013). Train data is used to group songs by similarities 

across song description features (Sánchez-Moreno et al., 2016). The K-means clustering algorithm 

selects k random centroids. Subsequently, the remaining data points are assigned to the cluster that is 

associated with the closest centroid. Cosine similarities are computed to determine which centroid is 

closest. This metric is chosen because cosine similarities generally lead to the highest accuracy, while 

also being efficient and simple (Sánchez-Moreno et al., 2016). The cosine similarity can be computed 

by the following equation, where x is the play count of song 1 and y is the play count of song 2 (Jin 

& Han, 2020): 

 

               (1) 

 

After assigning new data points, the average data point of the cluster becomes the new centroid. This 

process is repeated until clusters no longer change (Ju & Xu, 2013). Test and validation data is 

assigned to the closest train data centroid. In this manner, the test and validation set are not used for 

training the model. Another possibility would be to split the dataset into train, validation and test data 

after clustering all data. However, test and validation data would then be used for training, which 

would diminish the purpose of splitting the data.  

 The second step of the hybrid analysis is to generate a prediction of rel_rating per song per 

user. The model uses the K-nearest neighbors algorithm to find k similar songs within each cluster. 

The cosine similarity determines what songs are similar, since this metric is efficient, simple and is 

expected to lead to the highest accuracy (Sánchez-Moreno et al., 2016). However, figure 2 indicates 

that relative ratings are very skewed.  
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Figure 2 – Distribution of rel_rating   

 

Pacula (2010) argued that skewness could be solved by converting the continuous prediction value to 

a binary variable. This will increase the accuracy of recommendations. Thus, the continuous outcome 

of the predicted rel_rating is converted to 0 if it is expected that the person will not like the song, or 

1 if the person is expected to like the song. The continuous value 1.0 is chosen as boundary, meaning 

that someone is expected to like the song when rel_rating is 1.0 or higher. This boundary is chosen 

because a rel_rating of 1.0 indicates the average preference. It is intuitive that a rel_rating of 1.0 or 

higher means that someone likes the song. 

The goodness of clusters is evaluated by cluster similarity. To evaluate cluster similarity, the 

Davies Bouldin (DB) score is calculated. DB measures cluster compactness and divides this value by 

a value representing the separation among clusters. A lower score indicates low dispersion within 

clusters and a high distance between clusters (Baarsch & Celebi, 2012). Thus, a low score indicates 

high cluster similarity. The DB index is calculated by formula 2 (Davies & Bouldin, 1979): 

       

              (2) 

 

In this formula, 𝑖 indicates the cluster that is regarded, 𝑇𝑖 represents the number of observations in 

cluster 𝑖, the 𝑗th observation in cluster 𝑖 is denoted by 𝑋𝑗 and 𝐴𝑗 represents the centroid of cluster 𝑖. 

This similarity score is determined for the test set, which allows for comparing cluster similarity 

among different models. As opposed to the KNN algorithm, the train and test score will not be 

compared. This is due to the fact that K-means clustering is an unsupervised algorithm. It cannot be 

checked which clusters are most optimal, since the ground truth is unknown.   
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The accuracy of recommendations is evaluated by the test accuracy. The final accuracy scores 

are computed by calculating the weighted average accuracy of each cluster. Weights represent the 

size of the cluster, compared to the entire dataset. Thus, larger clusters are better represented than 

smaller clusters. Accuracy is calculated by formula 3: 

 

               (3) 

     

In this formula, TP indicates the number of true positives, which means that both the predicted and 

actual class is 1. True negatives (TN) indicate that the predicted and actual class is 0. False positives 

(FP) emerge if class 1 is predicted while the actual class is 0. In contrast, false negatives (FN) indicate 

that class 0 is predicted, while the actual class is 1. The choice for the accuracy score lies in the fact 

that a high fraction of correctly identified cases is desired. All classes are equally important, since 

missing recommendations is not worse than recommending irrelevant songs (Alabdulrahman, Viktor 

& Paquet, 2018). Generally, the F1 score is used for unbalanced classes, which is the case in this 

study. However, the imbalance is not unusually large. Further, the accuracy score is expected to be 

more informative than the F1 score, since the F1 score concentrates on false negatives and false 

positives. These numbers are not the focus of attention in this study. As a result, the choice for the 

accuracy score can be justified.  

 

3.3.2 Feature selection models 

The feature selection model is constructed in the same manner as the standard model. 

However, a number of features are selected, meaning that only part of the dataset is introduced to the 

model. With feature selection, the most informative features of the train set are extracted. Researchers 

argue that removing the least important features improves clustering, which will improve the quality 

and efficiency of the model (Ramezani, Moradi & Tab, 2013). However, Aggarwall (2016) and 

Kużelewska argue that strong clusters deteriorate quality, since part of the predictive power will be 

lost (2020). Nevertheless, since most researchers argue that  stronger clusters improve predictions, it 

is hypothesized that feature selection increases accuracy. This study uses the filter strategy, since it 

is aimed to find whether the feature selection model outperforms the standard model. Therefore, it is 

not necessary to use the computationally expensive wrapper strategy.  

Figure 3 displays the pipeline of the feature selection model. 
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Figure 3 – Pipeline feature selection model 

The methodology extends the standard model by filtering the dataset for the most informative 

variables. This step, which is marked in yellow, is performed before clustering the data. The Pearson 

Correlation is used to rank variables based on their importance. Namely, the Pearson Correlation is 

generally used for continuous features that aim to predict a continuous target value (Ndung'u et al., 

2021; Panda & Misra, 2021). The linear dependency between rel_rating and each song feature is 

calculated (Chandrashekar & Sahin, 2014). The n variables with the highest absolute linear 

dependency are selected. In addition, the variables song_id, user_id and rel_rating are included, since 

these are essential for recommending songs. 

 

3.3.3 Dimensionality reduction model 

Figure 4 demonstrates that all song variables are correlated to some extent. For instance, 

energy and loudness are 71 per cent correlated. It is therefore ineffective to include all features in the 

analysis. For this reason, dimensionality reduction is applied to transform song features into a lower 

number of dimensions (Panda & Misra, 2021). Using this technique generally leads to better 

performance (Panda & Misra, 2021). It is therefore hypothesized that the dimensionality reduction 

model produces a higher accuracy than the standard model. Further, the model increases efficiency. 
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Figure 4 – Correlation matrix 

 

A linear dimensionality reduction technique is used, since complex nonlinear methods are 

often not capable of outperforming linear methods (Van der Maaten, Postma and Van den Heerik, 

2009). Principal Component Analysis (PCA) is chosen, because PCA is a simple method which 

creates new and uncorrelated variables (Langensiepen et al., 2018). Additionally, PCA is able to deal 

with continuous data, which is necessary for this study (Nguyen & Holmes, 2019). Namely, even 

though predictions are converted to a binary scale, the KNN algorithm predicts continuous values. 

The pipeline for this model can be found in figure 5. 
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Figure 5 – Pipeline PCA model 

The pipeline for the PCA model is similar to the pipeline for the standard model. However, the PCA 

model transforms song features before generating song clusters. This step is marked in yellow. Song 

features are transformed into linearly uncorrelated sets (dimensions) of features (Panda & Misra, 

2021). Features are ranked based on the amount of explained variance. It is assumed that each 

additional dimension explains less variance than the dimension before. PCA aims to explain the 

highest amount of variance with the lowest number of PCA.  

 

3.3.4 Missing data imputations models 

Finally, the performance of a data imputation model is evaluated. This is done by comparing 

a model that uses the imputed dataset with the standard model, which uses the complete cases dataset. 

Missing data imputation is expected to improve cluster similarity and improve generalization, since 

more data can be analyzed. Better generalization will increase performance (Kuhn & Johnson, 2019). 

Additionally, data imputation is expected to improve the validity of the results. However, data 

imputation is computationally expensive. For this reason, it will be evaluated whether using data 

imputation is necessary.  

Figure 6 demonstrates the pipeline for the imputed model.  
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Figure 6 – Pipeline multiple imputation model 

 

This method is similar to the standard model. As opposed to listwise deletion, missing data is imputed 

(James et al., 2021). This step is marked in yellow. Therefore, the dataset that is used as input for the 

recommender system has changed. Multiple imputation is used to impute data, because this method 

is preferred for data that is missing not at random (James et al., 2021). Multiple imputation imputes 

the mean of several plausible values. In contrast to other models, it must be noted that the performance 

of the data imputation model cannot directly be compared to the standard model. This is due to the 

fact that the test set is different. Namely, the imputed dataset contains more observations, since 

different ways of missing value treatment is performed. 

 

3.4 Hyperparameter tuning 

Hyperparameter tuning is the process where values of parameters are set before training the 

model (Ghawi & Pfeffer, 2019). Finding the optimal values of hyperparameters benefits model 

accuracy. Optimal values are selected by validation data. Validation accuracy is used because this 

value is impartial, as opposed to the train accuracy. Namely, the validation set is not used for training 

the model. Hyperparameters are mutually dependent, meaning that the order of hyperparameter 

tuning needs to be determined. For simplicity, the order of the methodology will be pursued. Thus, 

model-specific hyperparameters will be tuned in section 3.4.1. Model-specific hyperparameters are 

parameters such as the number of dimensions in PCA and the number of features in feature selection. 

Subsequently, the optimal k in K-means clustering will be determined in section 3.4.2. Finally, 

paragraph 3.4.3 discusses the number of k in KNN.   
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3.4.1 Model-specific hyperparameters 

The model-specific hyperparameters that are tuned in this study are the number of most informative 

features in feature selection (n_features) and the number of dimensions in PCA. Since the optimal 

number of features is unknown, the order of best-performing features for each number of features 

ranging from one to fifteen will be determined by the Pearson Correlation. This range is chosen 

because the dataset contains fifteen song features. The validation accuracy will be calculated for each 

number of features. Subsequently, the number of features that produces the highest validation 

accuracy score will be selected. 

For PCA, the number of dimensions (n_components) must be specified. The choice depends 

on the amount of variance that is explained by each additional component. The dimension after which 

the variance drops substantially is chosen. This point can be determined by analyzing a graph which 

displays dimensions in combination with the accompanying amount of explained variance. If no clear 

turning point is visible, the optimal number of dimensions will be the number of dimensions that 

leads to the highest validation accuracy score. 

 

3.4.2 K in K-means clustering 

The k in K-means clustering is chosen by the silhouette score and the elbow method. These 

methods are commonly used (Shi et al., 2021). For the elbow method, the sum of squared distances 

(SSD) of each number of clusters is plotted. The SSD indicates the distance of each data point to their 

closest centroid. The optimal number of k will be determined by choosing the ‘elbow’ of the plot. 

This method relies on the idea that the first few clusters introduce a lot of variance. However, at some 

point, introducing a larger number of clusters no longer provides additional information (James et al., 

2021). Shi et al. (2021) argued that the elbow method leads to the optimal number of clusters. 

However, this point is ambiguous, since the actual ‘elbow’ may be disagreed upon. The sum of 

squared distances (SSD) is calculated by equation 4 (Pedregosa et al., 2011): 

 

                     (4) 

 

In this formula, 𝑥𝑗 indicates the datapoint that is concerned. Additionally, 𝜇𝑗 indicates the average 

data point.  

If the elbow method does not suffice, silhouette coefficients are used. Silhouette coefficients 

represent cluster similarity. When the number is close to 1, items are similar to other items in their 

cluster and different from items in other clusters. When the number is close to -1, clusters are 

arbitrary. The number of clusters associated with the highest score is chosen. Equation 5 can be used 

to calculate the silhouette score (Cintia Ganesha Putri et al., 2020): 
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              (5) 

 

In this formula, 𝑎(𝑗) is the average dissimilarity of data point 𝑗 with other data within its cluster. 𝑏(𝑗) 

is the minimum average dissimilarity of data point 𝑗 with any other cluster (Cintia Ganesha Putri et 

al., 2020).  

If the silhouette analysis does not lead to an obvious conclusion, the validation accuracy 

affiliated with each number of clusters is calculated. The number of clusters that is associated with 

the highest validation accuracy is selected.  

 

3.4.3 K in K-nearest neighbors 

The value of k in KNN is chosen by looping over all integer values between k=2 and k=20. 

For each value of k, the validation accuracy is calculated. The number of neighbors that leads to the 

highest validation accuracy is selected. Wazirali (2020) argued that an odd number of k is 

recommended, since this prevents ending up with a tie. Nevertheless, prediction outcomes are 

continuous variables, meaning that no tie could occur. As a result, it is irrelevant whether k is odd or 

even. 

 

3.5 Algorithms and packages 

To answer the research question, an analysis is performed in the Jupyter Notebook 

environment in Anaconda (Anaconda Software Distribution, 2020). Python (Van Rossum & Drake, 

1995) is used for programming, since this language is commonly used for recommender systems 

(Ahuja et al., 2019). Data preprocessing is performed using Pandas (McKinney, 2010) and Numpy 

(Harris et al., 2020). K-means clustering is performed by the scikit learn tool (Pedregosa et al., 2011). 

Additionally, this package is used for silhouette analysis, PCA and feature selection. K-nearest 

neighbors is performed by the surprise library (Hug, 2020). Furthermore, the MICE package is used 

for multiple imputation (Van Buuren & Groothuis-Oudshoorn, 2011). Further, several visualizations 

are designed in R (R Core Team, 2016), since customizing visualizations is easier with the ggplot 

package (Fahad & Yahya, 2018) than with Python packages. Other visualizations are created in 

Python. These visualizations are designed using the Matplotlib (Hunter, 2007) or Seaborn (Waskom 

et al., 2017) package.  
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4. Results 

Hyperparameter values and model results are disclosed in this chapter. Section 4.1 discloses 

the values of hyperparameters. When these are determined, the models can be run. Results on the 

similarity of items within clusters are examined in section 4.2. Further, section 4.3 demonstrates 

results on model performance. 

 

4.1 Hyperparameters 

It is described in paragraph 3.4 that model-specific hyperparameter values are determined 

first. Figure 15 in appendix I suggests that the optimal number of features for the feature selection 

method is twelve. It is determined by absolute Pearson Correlation scores that the features loudness, 

speechiness, acousticness, duration_ms, instrumentalness, danceability, energy, chorus_hit, mode, 

valence, sections and key are most informative. These are included in the model. Additionally, the 

features song_id, user_id and rel_rating are included, since these are crucial for generating 

recommendations. 

The optimal number of dimensions in PCA is determined by a drop of variance, compared to 

an earlier dimension. Figure 7 indicates that no substantial drop could be detected. For this reason, 

the validation accuracy of each dimension is calculated. Figure 16 in appendix I indicates that PCA3 

is optimal, since this leads to the highest validation accuracy. Similarly, the features song_id, user_id 

and rel_rating are included in the analysis. 

Figure 7 – Explained variance for PCA 
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After determining the values of model-specific hyperparameters, the number of k in K-means 

clustering are chosen. This study uses the elbow plot and the silhouette score to tune this 

hyperparameter. Scores are illustrated in figure 17 in appendix I. In these graphs, the black lines 

indicate the elbow plot, while the silhouette scores are presented by the blue line. For the 

visualizations, the SSD scores are normalized. This is because the ranges from the SSD scores and 

silhouette scores differ. Normalizing allows visualizing both plots in one graph.  

The elbow plot suggests that k=6 should be chosen for the feature selection model. For each 

other model, the elbow method does not produce clear results. Thus, silhouette scores will be 

regarded. The silhouette plot for the standard model peaks at k=4. However, the silhouette plot for 

the dimensionality reduction model is unambiguous. However, figure 18 in appendix I indicates that 

k=7 produces the highest silhouette score. Hence, this value will be chosen. For the imputation 

method, calculating SSD scores and silhouettes scores is too computationally expensive. Thus, the 

validation accuracy of all values of k, ranging from 2 to 8, will be calculated. This range is chosen 

because the optimal number of clusters for the other sub-questions falls within this range. Figure 18 

in appendix I suggests that k=8 should be chosen for the imputation model, since this value leads to 

the highest validation accuracy.  

Lastly, the number of k in KNN is selected. To do this, the validation accuracy for each number 

of k between 2 and 20 is calculated. The k that is accompanied with the highest validation accuracy 

is selected. The k’s that are used for this analysis are reported in figure 8. This figure also provides a 

summary for the other hyperparameter values that are chosen for this research.  

Figure 8 – Summary of hyperparameter values 

Model Model-specific 

hyperparameters 
k in K-means clustering k in KNN 

Standard model - 4 18 

Feature selection model 12 features 6 14 

Dimensionality reduction model 3 dimensions 7 14 

Missing data imputation - 8 16 

 

4.2 Results on cluster similarity 

Sub-question 1, 2 and 3 study the effect of feature engineering techniques on cluster similarity. 

Cluster similarity is determined by the Davies Bouldin score of test clusters. A lower Davies Bouldin 

score indicates high similarity. The scores are demonstrated in figure 9. 
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Figure 9 - Similarity of clusters 

Model Davies Bouldin score 

Standard model 2.701 

Feature selection model 2.217  

Dimensionality reduction model 1.460 

Missing data imputation model 2.749 

 

 Sub-question 1 concludes that feature selection improves cluster similarity. An equivalent 

conclusion can be drawn for sub-question 2, which regards the cluster similarity for the 

dimensionality reduction model. In contrast, missing data imputation leads to lower cluster similarity, 

although the difference is relatively small. Cluster visualizations for each model can be found in 

figure 18 in appendix I.  

 

4.3 Results on recommendation accuracy 

The performance of recommender systems that use feature engineering techniques is studied 

in sub-question 4, 5 and 6. Performance is measures by the accuracy of recommendations. Before 

interpreting the accuracy scores, confusion matrices are discussed. These provide more information 

on the effect of feature engineering techniques. Figure 10 illustrates the confusion matrix for each of 

the models. The matrices reveal the number of true and false positives and true and false negatives. 

Additionally, the accuracy, precision, recall and F1 scores are demonstrated. This increases 

interpretability of the results. Further, scores are calculated by the weighted average per cluster. This 

means that larger clusters are better represented than smaller clusters. For the sake of completeness, 

the number of true and false positives and negatives per cluster can be found in figure 20 in appendix 

I. The numbers and shares originate from test data, since test data is used to evaluate and compare 

models. 

Figure 10 - Confusion matrices 

Figure 10.1 - Standard model 

 

 

 

 

Figure 10.2 - Feature selection model 

 

 

 

 Predicted 0 Predicted 1 Accuracy: 0.749 

Actual 0 90,227 23,882 
Precision: 0.572 

Recall: 0.653 

Actual 1 17,015 31,967 F1: 0.610 

  Predicted 0 Predicted 1 Accuracy: 0.770 

Actual 0 92,586 21,526 
Precision: 0.605 

Recall: 0.674 

Actual 1 15,979 32,999 F1: 0.638 
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Figure 10.3 - Dimensionality reduction model 

 

 

 

Figure 10.4 - Missing data imputation model 

 

 

 

 

In confusion matrices, higher performance scores indicate better performance. Figure 10 

implies that each feature engineering technique results in higher precision, which means that the 

models are better capable of predicting the positive class. The feature selection model leads to a higher 

recall score. This score quantifies the share of positive predictions that is actually positive. In contrast, 

the missing data imputation model leads to a lower recall score. Dimensionality reduction does not 

increase nor decrease recall. The F1 score is the weighted average of recall and precision. The F1 

scores for feature selection and dimensionality reduction are better than the F1 score of the standard 

model. In contrast, the F1 score for data imputation is aggravated.  

However, it must be regarded that the distribution of the complete cases dataset and the 

imputed dataset differs. Specifically, the majority class of the complete cases dataset is 70.0 per cent. 

This dataset is used for the standard model, the feature selection model and the dimensionality 

reduction model. Thus, if the model simply predicts the majority class for all observations, it will 

already reach an accuracy of 0.7. In contrast, the majority class of the imputed dataset is only 60.1 

per cent. This difference should be taken into account when interpreting the results. For the 

classification scores in figure 10, it is important to note that obtaining high scores is more difficult 

for the imputed model. Thus, it cannot be concluded that the imputed model performs worse than the 

standard model. 

This thesis evaluates quality by the accuracy score. Since the accuracy scores of the feature 

selection and dimensionality reduction model are compared to the standard model, these accuracies 

are displayed in figure 11.  

Figure 11 - Accuracy scores feature selection and dimensionality reduction model 

Model Train accuracy Test accuracy 

Standard model 0.749 0.749 

Feature selection model 0.769 0.770 

Dimensionality reduction model 0.774 0.772 

  Predicted 0 Predicted 1 Accuracy: 0.772 

Actual 0 93,937 20,175 
Precision: 0.613 

Recall: 0.652 

Actual 1 17,044 31,937 F1: 0.632 

 Predicted 0 Predicted 1 Accuracy: 0.677 

Actual 0 251,822 57,805 
Precision: 0.627 

Recall: 0.472 

Actual 1 108,263 96,968 F1: 0.539 
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First of all, figure 11 demonstrates little differences between the train and test accuracy for each of 

the models. This outcome is important, since large differences between train and test evaluation 

metrics may compromise the validity of the results. To answer sub-question 4 and 5, it is concluded 

that feature selection and dimensionality reduction improve performance, compared to the standard 

model. This can be established since the test accuracy of these models is higher than the test accuracy 

of the standard model.  

 Figure 12 demonstrates accuracy scores for the imputation model.  

Figure 12 – Accuracy scores imputation model 

Model Train accuracy Test accuracy 

Standard model 0.749 0.749 

Missing data imputation model 0.675 0.677 

 

These scores are displayed in a separate figure, since the accuracy of the imputed model cannot be 

directly compared to the standard model. Figure 12 implies that the model does not overfit nor 

underfit, since little differences between the train and test accuracy are detectable. Regarding sub-

question 6, figure 12 demonstrates that the accuracy of the missing data imputation model is lower 

than the accuracy of the standard model. However, the naïve baseline that is affiliated with the 

imputed model is lower than the naïve baseline of the standard model. This is due to the fact that the 

dataset for the standard model is filtered for all complete observations, while the test set for the 

imputation model imputed missing values. Therefore, it cannot be concluded that the missing data 

imputation model performs worse than the standard model. In fact, the test accuracy of the imputed 

model outperforms the corresponding naïve baseline with a larger proportion than the test accuracy 

of the standard model, compared to its corresponding naïve baseline. It is therefore suggested that the 

missing data imputation model performs better, although this cannot be argued with certainty.  
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5. Discussion 

5.1 Findings 

In this study, a standard two-stage hybrid recommender system was compared to similar 

models which used feature engineering techniques before clustering. This study is conducted because 

earlier literature had not yet analyzed the effect of feature engineering techniques on cluster similarity. 

Moreover, the effect of cluster similarity on the quality of recommendations had not yet been studied.  

It was hypothesized that feature selection, dimensionality reduction and missing data 

imputation would result in higher cluster similarity. The hypotheses for feature selection and 

dimensionality reduction models are confirmed, since their Davies Bouldin (DB) statistic is lower 

than the DB index for the standard model. However, the DB index for the missing data imputation 

model is higher than the standard model. This indicates that multiple imputation aggravates similarity. 

Supposedly, multiple imputation is unable to impute appropriate values for song features. As a result, 

the model fails to generate clusters with high similarity. This conclusion is in line with research 

performed by James et al. (2021) and Panda and Misra (2021), who argued that no method is able to 

fully account for missing values. However, according to researchers, more data also simplifies 

creating clusters since more observations can be tested. Thus, the rejection of the hypothesis implies 

that using more data for better generalization (Panda & Misra, 2021) is less valuable for clustering 

than imputing plausible values. 

Further, it was expected that each feature engineering method would outperform the standard 

model. These hypotheses are confirmed for the feature selection and dimensionality reduction model. 

This supports findings by Jin and Han (2020), Ahuja et al. (2019), Liao and Lee (2016) and Kim et 

al. (2007), who argued that higher cluster similarity improves the quality of recommendations. 

Furthermore, this conclusion contrasts matters addressed by Aggarwall (2016) and Kużelewska 

(2020), who argued that better defined clusters may lead to worse performing models. In contrast, the 

data imputation model leads to lower accuracy than the standard model. However, the test set of the 

imputation model is larger than the test set of the standard model, since the standard model deleted 

all troubled observations. Therefore, comparing models is complicated. The data imputation model 

outperformed its naïve baseline by a larger share than the degree to which the standard model 

outperformed its naïve baseline. Thus, it is expected that missing data imputation improves 

performance. However, more research on data imputation is necessary to be certain. This suggestion 

is in line with Panda and Misra (2021), who argued that multiple imputation preserves accuracy. 

However, this contrasts research by Jin and Han (2020), since lower cluster similarity actually 

decreases accuracy in this case. Nevertheless, data imputation is recommended because it leads to 
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more robust results (James et al, 2021; Panda & Misra, 2021). Namely, the multiple imputation model 

is expected to better represent society.  

 

5.2 Limitations 

In this study, a number of issues should be considered. The main limitation is that the test set 

which is corresponding with the standard model is smaller than the test set corresponding with the 

imputation model. As a result, the models are confronted with different majority classes. This study 

aimed to check whether multiple imputation actually leads to better results than listwise deletion, 

since multiple imputation leads to higher computation costs. However, differences in the test set 

complicate the evaluation. Nevertheless, this seems like an insurmountable issue, since the test set 

naturally needs to be different. If the test sets were equal, both test sets would have to be filtered for 

all observations. However, the difference between these models is the input. As a result, no 

differences would occur. Another option would be that both sets preserve missing values. However, 

clustering cannot be performed when song features are missing. Hence, results could only be drawn 

for an item-based CF model, instead of a hybrid two-stage model. 

Another related limitation concerns the fact that missing values in the complete cases dataset 

are MNAR. MNAR data is a problem because it does not truly represent society. Therefore, results 

on the impact of feature selection and dimensionality reduction may be biased. In contrast, the data 

imputation model largely solved this issue by using an imputation method that is expected to be best 

for MNAR data. 

Furthermore, the absence of explicit user feedback requires guessing actual preferences. For 

this purpose, the relative rating is calculated. This method is expected to better represent preferences 

than play_count. Nevertheless, preferences still need to be estimated.  

Additionally, the boundaries chosen for category 1 (liking the song) and category 0 (not liking 

the song) affect performance. Namely, it is argued in this research that a relative play count of at least 

1.0 indicates liking the song. However, other people may say that a song is only liked when the 

relative play count is substantially higher than 1.0. 

Lastly, hyperparameter must be tuned in succession. Therefore, the order of the methodology 

is maintained. For the feature engineering models, the hyperparameter values of the standard model 

were used for k in K-means clustering and k in KNN. These assumptions are made because model-

specific hyperparameters such as n_features and n_components must be specified before determining 

the number of clusters and the number of neighbors. However, the optimal values of the number of 

clusters and the number of neighbors were not yet known, meaning that other values could have been 

optimal. 
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5.3 Future work 

For future work, it is recommended to follow up on missing data handling methods. Even 

though it is expected that missing data imputation leads to higher accuracy and more robust results, 

the results cannot confirm this with certainty. More research on the accuracy and robustness of 

MNAR data is therefore suggested. 
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6. Conclusion 

In this study, a two-stage recommender system was built. In the first stage, songs were 

clustered based on song features. This study aimed to analyze whether feature engineering techniques 

affect cluster similarity. In the second stage, recommendations were generated based on implicit 

ratings. This stage was evaluated by measuring the effect of feature engineering techniques on the 

performance of the recommendation system. The feature engineering techniques that were examined 

are feature selection, dimensionality reduction and missing data imputation. 

It was found that feature selection and dimensionality reduction result in higher cluster 

similarity. Further, these models improve the quality of recommendations, compared to the standard 

model. The missing data imputation model leads to aggravated clusters. This model also produces a 

lower accuracy for recommendations. However, the imputed model outperformed the naïve baseline 

by a larger share than the performance of the standard model, compared to its naïve baseline. As a 

result, it is suggested that the imputed model performs better. Further, the imputed model is preferred 

because of its higher robustness. However, it is recommended for future research to follow up on 

missing data imputation methods, since no evident conclusions can be drawn.  
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Appendices 

Appendix I 

Figure 13 – Dataset description 

Variable Description Data Type 

Title Name of the song Object 

Artist Artist of the song Object 

Uri Resource identifier for this song Object 

Danceability 
Danceability describes how suitable the song is for 

dancing, where 1 is most suitable and 0 is least suitable 
Float 

Energy 
Activity and intensity are measured, where 1 is most 

energetic and 0 is least energetic 
Float 

Key 

Estimated average key of the song, so the higher the 

key, the higher the overall note of the song. If no key is 

detected, key = -1 

Integer 

Loudness The overall loudness of the song in decibel (dB) Float 

Mode 
Modality (scale of the melodic content) of the song, 

where major = 1 and minor = 0 
Integer 

Speechiness 
This variable indicates the presence of spoken words in 

a song. The higher the value, the more spoken words 
Float 

Acousticness 

Confidence measure that describer whether the song is 

acoustic, where 1 represents the highest confidentiality 

of the track being acoustic 

Float 

Instrumentalness 

This variable predicts whether a song contains no 

vocals, so a value close to 1 indicates that the track is 

very instrumental 

Float 

Liveness 

Confidence measure of the song being performed live, 

so a value close to 1 means that the song was probably 

recorded when performed live 

Float 

Valence 
Valence represents the positivity of a song, a value of 1 

means that the song is very positive 
Float 

Tempo Tempo of the song in beats per minute (BPM) Float 

Duration_ms Duration of the song in milliseconds Integer 
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Time_signature 
A high time signature indicates a high number of beats 

per bar (or other measure) 
Integer 

Chorus_hit 
Estimate of the moment that the chorus would start for 

the track. This value is represented by milliseconds 
Float 

Sections Number of sections in the song Integer 

User_id ID of the user Object 

Song_id ID of the song Object 

Play_count The number of times the user has played the song Integer 

Album Album in which the song was released Object 

Year Release year of the song Integer 

Rel_rating 

Relative rating of the song, where 1.00 means that the 

person thinks the song is average. When rel_rating > 

1.00 it is concluded that the person likes the song. Also, 

when rel_rating < 1.00 the person will not like the song. 

The relative rating is calculated by the play count 

divided by that person’s mean play count. 

Float 

           Source: Ansari (2020) 
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Figure 14 – Distribution of song variables  
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Figure 15 – Number of features with feature selection 

Number of features Feature to add Validation accuracy 

1 Loudness 0.591 

2 Speechiness 0.602 

3 Acousticness 0.601 

4 Duration_ms 0.613 

5 Instrumentalness 0.601 

6 Danceability 0.601 

7 Energy 0.604 

8 Chorus_hit 0.604 

9 Mode 0.608 

10 Valence 0.606 

11 Sections 0.608 

12 Key 0.623 

13 Liveness 0.605 

14 Time_signature 0.619 

15 Tempo 0.621 
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Figure 16  – Number of dimensions with PCA 

PCA Variance explained (cumulative) Validation accuracy 

1 0.175 0.610 

2 0.301 0.610 

3 0.405 0.637 

4 0.487 0.634 

5 0.561 0.599 

6 0.629 0.602 

7 0.692 0.604 

8 0.753 0.580 

9 0.812 0.605 

10 0.866 0.609 

11 0.914 0.604 

12 0.947 0.601 

13 0.975 0.621 

14 0.988 0.612 

15 1.000 0.621 
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Figure 17 – Silhouette analyses 

17.1 Standard model 

 

 

17.2 Feature selection model 

 

 

17.3 Dimensionality reduction model  
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Figure 18 – Determine the number of clusters 

18.1 Standard model 

Number of clusters Silhouette score Sum of squared distances 

2 0.567 214518.168 

3 0.376 184249.085 

4 0.387 162437.609 

5 0.352 150404.899 

6 0.300 142501.372 

7 0.314 134948.680 

8 0.284 128129.867 

9 0.277 123918.663 

10 0.254 120843.830 

11 0.262 117124.111 

12 0.238 113830.312 

 

18.2 Feature selection model 

Number of clusters Silhouette score Sum of squared distances 

2 0.520 31846.544 

3 0.345 26944.295 

4 0.370 23900.675 

5 0.371 21540.262 

6 0.411 19257.441 

7 0.340 17869.232 

8 0.352 16503.908 

9 0.361 15506.707 

10 0.366 14620.249 

11 0.272 13969.130 

12 0.272 13240.642 
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18.3 Dimensionality reduction model 

Number of clusters Silhouette score Sum of squared distances 

2 0.207 5529558.704 

3 0.185 5055565.479 

4 0.179 4726832.509 

5 0.168 4433059.393 

6 0.181 4156209.622 

7 0.191 3980815.822 

8 0.176 3793614.586 

9 0.184 3631590.543 

10 0.181 3541232.722 

11 0.203 3369847.577 

12 0.206 3257968.397 

 

18.4 Data imputation model 

Number of clusters Validation accuracy 

2 0.656 

3 0.665 

4 0.664 

5 0.671 

6 0.547 

7 0.656 

8 0.675 
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Figure 19 – Clusters 

19.1 Standard model, train clusters 

 

19.2 Standard model, test clusters 
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19.3 Feature selection model, train clusters 

 

19.4 Feature selection model,, test clusters 
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19.5 Dimensionality reduction model, train clusters 

 

 

19.6 Dimensionality reduction model, test clusters 
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19.7 Data imputation model, train clusters 

 

 

19.8 Data imputation model, test clusters 

 

 

  



52 

 
Figure 20 – Confusion matrix per model per cluster 

20.1 – Standard model 

20.1.1 Cluster 1 

 

 

 

 

20.1.2 Cluster 2 

 

 

 

 

20.1.3 Cluster 3 

 

 

 

 

20.1.4 Cluster 4 

 

  

 Predicted 0 Predicted 1 

Actual 0 33,826 10,285 

Actual 1 6,678 12,743 

 Predicted 0 Predicted 1 

Actual 0 11,556 2,132 

Actual 1 1,965 3,960 

 Predicted 0 Predicted 1 

Actual 0 9,927 1,622 

Actual 1 1,565 3,534 

 Predicted 0 Predicted 1 

Actual 0 34,918 9,843 

Actual 1 6,807 11,730 
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20.2 – Feature selection model 

20.2.1 Cluster 1 

 

 

 

 

20.2.2 Cluster 2 

 

 

 

 

20.2.3 Cluster 3 

 

 

 

 

20.2.4 Cluster 4 

 

 

 

 

20.2.5 Cluster 5 

 

 

 

 

20.2.6 Cluster 6 

 

  

 Predicted 0 Predicted 1 

Actual 0 15,374 2,861 

Actual 1 2,435 5,482 

 Predicted 0 Predicted 1 

Actual 0 19,717 4,043 

Actual 1 3,300 6,497 

 Predicted 0 Predicted 1 

Actual 0 7,595 946 

Actual 1 1,122 2,369 

 Predicted 0 Predicted 1 

Actual 0 12,887 2,471 

Actual 1 2,232 4,452 

 Predicted 0 Predicted 1 

Actual 0 4,316 1,349 

Actual 1 362 2,202 

 Predicted 0 Predicted 1 

Actual 0 32,697 9,856 

Actual 1 6,528 11,997 
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20.3 – Dimensionality reduction model 

20.2.1 Cluster 1 

 

 

 

 

20.3.2 Cluster 2 

 

 

 

 

20.3.3 Cluster 3 

 

 

 

 

20.3.4 Cluster 4 

 

 

 

 

20.3.5 Cluster 5 

 

 

 

 

20.3.6 Cluster 6 

 

 

 

 

20.3.7 Cluster 7 

 

 

 

 

 Predicted 0 Predicted 1 

Actual 0 13,501 2,558 

Actual 1 2,314 4,312 

 Predicted 0 Predicted 1 

Actual 0 6,340 1,775 

Actual 1 1,706 1,125 

 Predicted 0 Predicted 1 

Actual 0 26,734 6,118 

Actual 1 4,905 8,163 

 Predicted 0 Predicted 1 

Actual 0 12,280 1,750 

Actual 1 1,783 3,713 

 Predicted 0 Predicted 1 

Actual 0 6,595 789 

Actual 1 996 2,172 

 Predicted 0 Predicted 1 

Actual 0 27,429 6,280 

Actual 1 5,021 8,530 

 Predicted 0 Predicted 1 

Actual 0 1,056 905 

Actual 1 319 3,922 
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20.3 – Data imputation model 

20.2.1 Cluster 1 

 

 

 

 

20.3.2 Cluster 2 

 

 

 

 

20.3.3 Cluster 3 

 

 

 

 

20.3.4 Cluster 4 

 

 

 

 

20.3.5 Cluster 5 

 

 

 

 

20.3.6 Cluster 6 

 

 

 

 

20.3.7 Cluster 7 

 

 

 

 

 Predicted 0 Predicted 1 

Actual 0 19,574 4,666 

Actual 1 3,391 7,339 

 Predicted 0 Predicted 1 

Actual 0 179,461 93,389 

Actual 1 46,274 71,295 

 Predicted 0 Predicted 1 

Actual 0 5,330 1,623 

Actual 1 475 2,672 

 Predicted 0 Predicted 1 

Actual 0 3,492 220 

Actual 1 450 1,082 

 Predicted 0 Predicted 1 

Actual 0 7,415 860 

Actual 1 1,018 2,325 

 Predicted 0 Predicted 1 

Actual 0 1,467 17 

Actual 1 66 556 

 Predicted 0 Predicted 1 

Actual 0 10,394 1,794 

Actual 1 1,722 3,604 
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20.3.8 Cluster 8 

 

 

  

 Predicted 0 Predicted 1 

Actual 0 24,689 5,694 

Actual 1 4,409 8,095 
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Appendix II 

Code can be found on https://github.com/tessaroes/SpotifyRecommenderSystem.  

https://github.com/tessaroes/SpotifyRecommenderSystem

