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Abstract

As procrastination rates keep growing, researchers strive to un-
derstand its underlying mechanisms. Such understanding could help
to prevent and thus limit this behaviour and its adverse effects. Mul-
tiple authors have previously investigated the relationship between
smartphone use and procrastination, however, most earlier studies
on procrastination relied on surveys to capture smartphone use. This
method has been questioned as it rarely reflects user smartphone
behaviour accurately. Thus, this thesis implemented a different ap-
proach and used smartphone logs instead. While some other authors
also used phone logs for prediction of procrastination, no one has yet
explored how sequential patterns of smartphone use might contribute
to the prediction. Sequential patterns have previously proven to be
useful for the prediction of other psychological states, such as mood
or emotions. Using a dataset that consisted of smartphone logs of
231 users, this thesis tested how well sequential and non-sequential
features can predict daily procrastination. This was observed for
three different classifiers, namely Decision Tree, Random Forest, and
XGBoost. The best performance was achieved by a combination of
sequential and non-sequential features and the XGBoost classifier.
Thus, evidence was found that the sequential features complement
non-sequential features. While certain limitations of the analysis
were identified, the results still provide a promising starting point for
future research.

1 introduction

Procrastination describes the tendency to postpone what is necessary to
reach some goal (Lay, 1986). One example of procrastinating is delaying
studying until the last night before the exam, even though weeks were
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given to prepare. This behaviour can then lead to various negative conse-
quences on health and well-being, such as feelings of shame, guilt, worry,
and anxiety (Sirois & Pychyl, 2013). Even though there is increasing at-
tention to the topic of procrastination, there is still relatively little known
about the relationship between smartphone usage patterns and procras-
tination. Specifically, no research is available on the use of sequential
patterns to predict procrastination. Thus, this thesis aims to contribute
to the understanding of procrastination by exploring the contribution of
sequential and non-sequential features to predicting daily procrastination
from individuals’ smartphone logs.

From a societal perspective, being able to predict an individual’s level
of procrastination from their smartphone usage data could contribute
to a better understanding of the mechanisms behind this undesirable
behaviour, as well as to a better understanding of how to prevent it.
Additionally, finding a method that allows predicting procrastination using
easily collectible data, such as phone logs, would be useful for developing a
cost-efficient anti-procrastination application. This application could notify
its users if they are about to start procrastinating and even potentially
provide some exercise that could stop them from procrastinating, based on
their smartphone activity. This would allow to avoid the use of sensors or
other more expensive detection methods. While some phone usage features
were previously used to predict procrastination, no one has ever exploited
frequent sequential patterns for the prediction of procrastination. From a
scientific perspective, this thesis contributes to the existing knowledge by
exploring the added value of those sequential features compared to the
existing approaches.

1.1 Research Questions

This thesis aims to answer the following question:

MQ To what extent is it possible to predict daily procrastination from smartphone
logs using sequential and non-sequential features?

Guided by the gap in previous literature, the main goal of this thesis is
to research whether sequential features could improve the prediction of
procrastination. This question will be treated as a classification task with
three possible outcomes (low, medium, and high daily procrastination).
For this purpose, three different classifiers will be introduced; Decision
Tree, Random Forest, and XGBoost; together with three different sets of
features. These sets are sequential features, non-sequential features, and
a combination of both. Each pair of a classifier and a feature set will be
tuned using grid search with cross-validation to find the best-performing
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hyperparameters. The results will then be compared to two baseline
models, Majority Class and Naive Bayes classifier.

More specifically, the following sub-questions will be addressed:

SQ1 Which combination of a feature set and a classifier achieves the highest macro
F1-score in the prediction of daily procrastination?

To answer this sub-question, the performance of all nine possible com-
binations of the classifier models and feature sets will be evaluated on
the testing dataset and compared to each other. The comparison between
models with and without sequential features will be an area of partic-
ular interest. The sequential features will consist of sequential patterns
extracted from the smartphone logs per day using the cSPADE algorithm.
Instead of using their original application names, each application log will
be assigned to a more general category. This way, more universal rules
can be derived. For non-sequential features, the frequency of a category of
application and time spent on that category per day will be considered.

SQ2 How does the prediction quality of the best-performing model differ per
class?

To prevent procrastination, it is important to build a model that reliably
predicts high and medium levels of procrastination, since these are the
levels that require intervention. On the other hand, misclassifying a low
level of procrastination might not present such an issue (for example, an
additional phone exercise is not excessively time-consuming). A confu-
sion matrix will be observed to understand the quality of prediction per
procrastination class.

SQ3 How does the macro F1-score of the best-performing model differ for disparate
groups, namely men and women?

This will be analysed by comparing the macro F1-score values be-
tween men and women, which will help to understand whether the best-
performing model is better suited for a specific gender. If the model
performs better for one gender, this might affect its generalization to the
rest of the population.

The main results suggest evidence in favour of including sequential
features derived from smartphone logs for procrastination prediction. It
is determined that the highest F1-score can be achieved by an XGBoost
classifier together with the combination of sequential and non-sequential
features. This model attains a macro F1-score of 33.8%. Additionally, all
nine main models outperform both baseline models. Further investigation



2 related work 4

of the best-performing model reveals that the model predicts the medium
level of procrastination the best and the high level of procrastination the
worst. Additionally, the disparate group analysis suggests that the model
performs better for men than for women by 7.4 percentage points.

2 related work

2.1 Procrastination

The topic of procrastination has been gaining popularity in the past years,
as procrastination rates keep increasing over time (Steel, 2011). In daily life,
this behaviour can manifest in various ways. For example, procrastination
can consist of avoiding scheduling medical appointments, which can later
lead to a delay in treatments, a decrease in health, and an increase in
perceived stress levels (Sirois, Melia-Gordon, & Pychyl, 2003). In a work
setting, procrastination can cause postponing work-related tasks, which in
turn leads to job dissatisfaction, worsened performance, and more stress
(Beheshtifar, Hoseinifar, & Moghadam, 2011). Students who struggle with
procrastination tend to choose other activities, such as socialization and
entertainment, over studying, and because of that start studying way later
than would be optimal (Schouwenburg, 1995). In general, the main effects
of reoccurring procrastination can be summarized as a delay in a certain
activity, as well as a decrease in mental health and well-being (Rozental &
Carlbring, 2014).

2.2 Procrastination and Smartphones

At least a part of the interest in procrastination can be attributed to the
growing availability of smartphones (Steel, 2011). While previous research
suggests that there is a link between procrastination and smartphones, the
direction of this relationship is not completely clear.

On the one hand, some authors proposed that the use of smartphones
could lead to procrastination. Since smartphones are small and can be
taken anywhere and used anytime, they can easily cause distraction and
postponement of the originally intended task (Oulasvirta, Rattenbury, Ma,
& Raita, 2012). Meier (2022) suggested that the urge to regularly check
one‘s smartphone significantly contributes to procrastination. Addition-
ally, smartphone users might be interrupted from their tasks by various
notifications, such as messages (Stothart, Mitchum, & Yehnert, 2015).

On the other hand, some authors suggested that smartphone use is
one of the means of procrastination. Previously, different social media and
communication channels have been identified as means of procrastination.
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Closson and Bond (2019) concluded that Tumblr, Twitter, Pinterest, and
Instagram are all common ways to procrastinate. The results of Meier,
Reinecke, and Meltzer (2016) added that students also often use Facebook
to procrastinate. Since smartphones are an easy way to access social
media, procrastination may manifest in increased smartphone use. Further,
this behaviour can also be extended to other types of applications, such
as streaming (Merrill & Rubenking, 2019), Internet browsing (Thatcher,
Wretschko, & Fridjhon, 2008), and gaming (Hinsch & Sheldon, 2013).

2.3 Smartphone Use as a Predictor of Procrastination

Previously, smartphone use has already been utilized as a predictor of
procrastination. One stream of literature chose to capture smartphone use
through self-reported surveys. Yang, Asbury, and Griffiths (2019) imple-
mented paper-based surveys to capture problematic phone use (PPU), such
as constantly checking for possible messages, by using psychometric scales.
Based on path analysis, they concluded that academic procrastination is
positively predicted by PPU. Their reported Root Mean Square Error of
Approximation equaled 0.008. PPU can also be used to predict bedtime
procrastination, according to Cui et al. (2021). Their conclusion was based
on a cross-lagged panel model and the results of a survey collected from
university students. This research achieved a Root Mean Square Error of
Approximation of 0.008. Self-reported surveys were also used by Li, Gao,
and Xu (2020), who made use of correlation analysis and observed that
smartphone dependence contributes to academic procrastination. These
three articles are closely related to the topic of this thesis but their method-
ology differs strongly. Since they approached the task of procrastination
prediction as a regression task, their performance was still reported but it
could not be directly compared to the results of this thesis.

However, all three of the above-mentioned papers face the limitations of
self-reported surveys. More specifically, this method strongly depends on
assuming that its participants are able and willing to report the truth about
their smartphone use behaviour, which may be debatable (Davidson, Shaw,
& Ellis, 2020). As a response, a new stream of literature has advocated
for a switch to activity logs to collect information about smartphone use.
Aalbers, vanden Abeele, Hendrickson, de Marez, and Keijsers (2022) used
smartphone logs to obtain data on the total use of smartphones, use of
specific types of applications, application notifications, and smartphone use
fragmentation. Their analysis, which implemented a dynamic structural
equation, presented evidence for an association between smartphone use
patterns and procrastination. Due to the nature of the methodology, their
results could not be directly compared to the results of this thesis, either.
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Nonetheless, following the arguments of the authors, this thesis also adopts
smartphone logs as a substitute for surveys.

2.4 Sequential Patterns in Prediction of Psychological States

In a more general context of psychological state prediction, a new approach
to processing sequential data (such as smartphone logs) has emerged. This
approach is called sequential pattern mining, and it helps to identify
frequent sequences that occur in a dataset. Sequential patterns can later be
used as features in prediction. Previously, Martínez and Yannakakis (2011)
used gameplay data combined with physiological data, such as blood pulse,
to predict the emotions of individuals. To do so, Generalized Sequential
Pattern (GSP) sequence mining algorithm was implemented. Their results
suggested that introducing sequential patterns improved accuracy for two
of the six studied types of emotions, namely fun and challenge. Compared
to a model with non-sequential features, the accuracy of fun increased by
1.48%, while the accuracy of challenge increased by 6.48%. While these
results might be slightly outdated, they are still worth mentioning in the
context of this project, especially because the research in this field is very
limited.

While physiological data has been proven to be informative, it remains
relatively invasive and costly. This might be acceptable for high-stake
situations (e.g., prediction of medical outcomes), however, it is difficult
to implement on a larger scale, and especially for lower-stake scenarios
(Vildjiounaite et al., 2018). Since the majority of the population in emerging
economies uses smartphones daily (Silver, 2019), there is little additional
cost to collecting smartphone usage data, which presents another argument
in favour of using smartphone logs. Alibasa, Calvo, and Yacef (2022) intro-
duced a model that predicted an individual’s mood from their smartphone
usage (specifically the opened types of applications). Frequent sequential
pattern features were mined by implementing GSP and SPTC (Sequential
Patterns mining with Time Constraint) together with a Random Forest
classifier. They concluded that sequential patterns improved the accuracy
of prediction compared to models with non-sequential features, with a
final accuracy of 77.8% and a macro F1-score of 55.6%.

Yet, to my knowledge, no one has exploited sequential patterns of smart-
phone logs for the prediction of procrastination. Following the newest
developments in the literature, this thesis aims to explore whether sequen-
tial patterns could also improve prediction accuracy for procrastination.
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2.5 Sequential Pattern Mining Methods

As mentioned previously, sequential pattern mining allows the identifica-
tion of frequent sequences in a dataset. However, the first pattern mining
algorithms were introduced to discover patterns in datasets without a spec-
ified order between the individual items. Probably the best-known pattern
mining algorithm, Apriori, is commonly used to determine which items
are often purchased together. Apriori starts by searching for individual
items in the dataset that occur frequently and then continues increasing the
size of the set of items until there are no larger frequent itemsets (Agrawal
& Srikant, 1994).

Eventually, the Apriori logic was also extended to ordered (i.e., sequen-
tial) data. The Generalized Sequential Pattern (GSP) algorithm takes a
dataset with ordered events as an input and outputs frequent sequences
found in that dataset. Like Apriori, it starts with singular items and keeps
adding items to the sequence until no more frequent sequences can be
found. Every time before the sequence size is increased, the algorithm
eliminates all non-frequent sequences (Srikant & Agrawal, 1996).

cSPADE was introduced as an alternative to the GSP algorithm. Similar
to GSP, it also builds on the Apriori algorithm. However, it works with a
different format of input. GSP processes data in a horizontal format, where
the input consists of a set of sequences, and each of the sequences consists
of a list of items. In contrast, cSPADE requires the data to be in a vertical
format, which maintains the time stamp and the object in which it occurs
for every sequence. cSPADE also significantly reduces the number of scans
through the database compared to GSP and minimizes computational
costs, and thus outperforms the previous approaches (including GSP) with
respect to runtime (Zaki, 2001). That is why, contrary to Martínez and
Yannakakis (2011) and Alibasa et al. (2022), cSPADE was implemented
instead of GSP.

cSPADE has been previously successfully applied to a variety of topics.
Some examples include extracting the flows of taxi movements (Ibrahim
& Shafiq, 2019), analyzing the behaviour of self-learners in online courses
(Wong, Khalil, Baars, de Koning, & Paas, 2019), and identifying diagnosis
sequences of cancer patients (Wang, Hou, & Wang, 2018). Based on its
accomplishment in other fields, it was chosen as the sequential pattern
mining method also for this thesis.

3 methodology

An overview of the general pipeline for the main models used in this
thesis is provided in Figure 1. Here, a general walk through the pipeline
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is provided. The section Experimental Setup then provides more detailed
information for each step. Starting with three separate datasets (phone
logs, procrastination survey, and application categories), each of them
was first explored and cleaned. This ensured that all three datasets were
compatible and that any inconsistencies or illegal values were removed.
Eventually, all three datasets were merged into one. Next, the data was
split into training and testing data. Only the training data was utilized for
mining sequential patterns using cSPADE. However, the sequential and
non-sequential features were later created for both testing and training
data. Since these features were created per day, there was no information
bleeding between the training and testing data. Next, oversampling was
performed on the training dataset with the full set of features. Then
each of the three classifiers was trained on each of the three feature sets
(sequential features, non-sequential features, combination of both), using
hyperparameters determined by a grid search. All nine models were
evaluated using test data and compared based on their macro F1-score.
Lastly, disparate group analysis was presented for the best-performing
model.

3.1 Baseline Models

In this section, two baseline models are introduced: the Majority Class
model and the Naive Bayes model. Their main purpose was to provide
more understanding of the classification task before the main models were
introduced. The Majority Class model, also called the Zero Rate Classifier,
is a common choice for classification task baselines. It simply classifies
all predictions as the most frequent class. From its performance, it can
be understood what F1-score can be achieved by the simplest classifi-
cation method. The Majority Class model was trained on the original
non-oversampled data, to make sure that the majority class identification
was not distorted by the synthetic observations.

The Naive Bayes model was added to further explore how much could
be predicted using only the non-linear features. It makes its predictions
using the posterior probability of every class and feature available in the
dataset. This model assumes that all features are independent of each
other, which is not likely. However, it is still observed to perform well
even on classification tasks where this assumption does not hold (Rish,
2001). A grid search with 5-fold cross-validation was applied to determine
the optimal value for the hyperparameter variance smoothing, which was
determined to be approximately 0.0187. The possible values were 100

equally distributed values between 0 and 1e−9, which is the default value
of this parameter. Such a broad scale was chosen since there was not
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a lot of information available on the commonly used values. This way,
the chances of completely missing the right set of possible values were
minimized. The Naive Bayes model was trained on the oversampled data,
to ensure that it was provided with the same data as the main models
(more detailed information about the oversampling process is provided in
Section 4.4).

3.2 Main Models

In this section, more details are introduced about the three main classifiers:
Decision Tree, Random Forest, and XGBoost. All these models belong
to the family of tree-based classification algorithms, but each of them
provides a different level of complexity. Additionally, each of the models
was introduced in three variations: one with only non-sequential features,
one only with sequential features, and one with both non-sequential and
sequential features. This way, it was possible to observe whether a certain
set of features achieved the highest F1-score in all settings or whether the
results were more model-specific. Where applicable, the random state
was set to 123 to ensure that replication was possible. Previous literature
did not provide a clear consensus on which hyperparameters are essential
for the prediction of procrastination. Therefore, the hyperparameters to
be tuned were chosen based on more general literature (Mantovani et al.,
2018; Probst & Boulesteix, 2017; Sommer, Sarigiannis, & Parnell, 2019). The
possible hyperparameter values were then selected based on these sources
and the author’s own experimentation with possible values.

Starting with the Decision Tree Classifier, this model was included for
its simplicity. It has an intuitive interpretation which has made it one of the
most popular algorithms in Machine Learning (Turska, Jurga, & Piskorski,
2021). The Decision Tree Classifier predicts labels by simply learning
decision rules from the training data. For each feature set (non-sequential,
sequential, combined) hyperparameters were tuned separately so no model
was disadvantaged. The tuning was done using a grid search with 5-fold
cross-validation, using macro F1-score for evaluation. The possible values
of maximum depth, which is the depth at which the tree stops splitting, were
set to 2, 4, 6, and 8. The possible values of minimum samples split, which
is the fraction of samples needed to make a split, were set to 0.2, 0.3, 0.4,
and 0.5. An overview of the optimal hyperparameter values per model
is provided in Table 1. The deepest decision tree was built for the task
with non-sequential features, while the task with sequential features used
a depth of only 2. The minimum samples split remained relatively low for
all three modifications of the model, with the maximum proportion of 0.4
used by the decision tree with sequential features.
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Table 1: Hyperparameter values of each model. Learning R. stands for Learning
Rate, Nr. of Estimators stands for Number of Estimators. Abbreviation Non-Seq.
represents Non-Sequential set of features.

Hyperparameters

Model Max Depth Min Samples Split

Decision Tree
Non-Seq. 8 0.2
Sequential 2 0.4
Combined 6 0.2

Max Depth Nr. of Estimators

Random Forest
Non-Seq. 4 100

Sequential 6 150

Combined 4 300

Max Depth Nr. of Estimators Learning R.

XGBoost
Non-Seq. 8 200 0.1
Sequential 8 200 0.1
Combined 8 100 0.1

Secondly, the Random Forest Classifier was included. This model trains
multiple decision trees and then takes the majority vote of those trees to
determine the predicted class. This model is included since the Random
Forest Classifier proved to be the best classifier for various mood states in
previous research (Alibasa & Calvo, 2019; Alibasa, Calvo, & Yacef, 2019).
Three hyperparameters were tuned in this model, again separately for each
feature set. The possible values of maximum depth were set to 2, 4, 6, and
8. For the number of estimators, which determines the number of trees that
are built, the possible values were set to 50, 100, 150, 200, 250, 300, and
350. The actual maximum depth of the models varied between 4 and 6.
The number of estimators differed per model, with the lowest value (100)
belonging to the model with non-sequential features and the highest value
(300) belonging to the model with combined sequential and non-sequential
features.

Thirdly, the eXtreme Gradient Boosting (XGBoost) Classifier was in-
cluded. This was the most complex model out of the three. Unlike the
Random Forest, it does not only train many independent decision trees. In
XGBoost, each tree learns from its predecessors, which helps to improve its
performance. This model was included because it is generally considered
a state-of-the-art method for many classification tasks, as suggested by
Chen and Guestrin (2016). 3 hyperparameters were tuned using a grid
search with 5-fold cross validation: maximum depth (2, 4, 6, 8), the number
of estimators (50, 100, 150, 200) and learning rate, which determines by how
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Figure 1: General data science pipeline for the main models.

much the weights of features get shrunk in each iteration (0.1, 0.01, 0.05).
All three modifications of this model used very similar hyperparameter
values. For all three, the maximum depth was set to 8 and the learning
rate to 0.1. The only difference was in the number of estimators, which
was set to 200 for the sequential and non-sequential features and 100 for
the combined model.

4 experimental setup

In this section, more details are provided about the steps introduced in
Figure 1, as well as about other relevant aspects of the experimental setup.

4.1 Dataset Description

The data of interest was originally collected for a study of the relationship
between smartphone use and mental health using the Tilburg University
participation pool (for a more comprehensive description of the dataset,
see Aalbers et al. (2022)). From this study, three types of data were used
for this thesis. The first type was daily data on procrastination which
was collected using online surveys. These surveys were distributed to
the participants multiple times a day using notifications on their smart-
phones. Originally, 247 participants were included, however, surveys were
successfully collected for only 231 of them. In total, there were 51,329 pro-
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crastination answers recorded. The second type of data was smartphone
use information, which was collected from participants’ phones using a
logging application called mobileDNA in the period between January 23,
2020, and June 20, 2020. For each user, there was one dataset created:
this dataset contained all application logs within the given time period,
including the start and end time of every application used. Altogether,
there were 5,430,973 application logs collected. Thirdly, a dataset with ap-
plication categories was used. This dataset contained 50 general categories;
such as Social Networking, News, and Job Search; assigned to most of the
application names present in the previous dataset.

4.2 Data Cleaning and Pre-Processing

First, all individual application logs were merged into one dataset with
all participants. Next, all data was investigated and cleaned. 123,667

duplicate application logs were found and removed, as they did not carry
any additional information. Additionally, one illegal application log was
identified and removed. This was an application log with the end time
lower than the start time. After merging application logs to the categories,
583,941 logs (belonging to 2,712 unique applications) were left without a
category. The 20 most frequent missing applications (showed in Figure 2)
were manually assigned to a previously existing category, which helped
to regain 514,486 of the missing logs. The newly assigned categories are
shown in Appendix A (page 29). The rest of the missing logs were dropped
from the dataset since these applications were relatively rare and the trade-
off between the information gain and the time invested in categorizing
was less favourable. Moreover, observations that fell into the category
Background Process were excluded from the analysis as only applications
opened by the user are of interest. Variables that were not relevant to this
project were dropped from the datasets and finally, procrastination survey
data was merged with the application logs with categories.

4.3 Variables

4.3.1 Procrastination

The dependent variable, procrastination, was originally measured using a
7-point Likert scale. This scale reflected the extent to which participants
identify with the following statement “I wasted time by doing other things
than what I had intended to do.” These procrastination values were first
averaged per day. This step was based on Likamwa, Liu, Lane, and Zhong
(2013), who suggested that daily measures better capture longer-lasting
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Figure 2: 20 most frequent applications with a missing category.

occurrences of psychological states. This way, the attention could shift
to the more persistent cases of procrastination, instead of just isolated
cases. Next, the procrastination measure was transformed into three
categories: a score lower than or equal to 2 was categorized as “low
procrastination”; score higher than 2 but lower than or equal to 5 was
categorized as “medium procrastination”; and score higher than 5 was
categorized as “high procrastination”. This created classes with more
intuitive interpretations and made the results easier to apply for potential
procrastination detection apps. This way, major intervention could be
introduced when high procrastination is predicted, medium procrastination
could be treated with less urgency and no action would be required if low
procrastination was predicted.

4.3.2 Non-Sequential Features

Since there were many unique applications included in the app logs file
and some were used scarcely, the applications were previously assigned to
more general categories. This allowed drawing more general conclusions
considering the type of digital activity, instead of just the application name
(Alibasa et al., 2022). Based on previous research on psychological state
prediction, two types of non-sequential variables were constructed from
the available information: duration of use per category and frequency of
use per category (Alibasa & Calvo, 2019; Ciman & Wac, 2018). Including
these variables helped us to understand if there was any additional value
to adding sequential features and how helpful non-sequential features
were by themselves.
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Figure 3: Density plot of duration per application log.

Firstly, the duration of use per category of application was considered.
To start, duration of application per log was created. The distribution of
this variable is presented in Figure 3. This figure suggested the presence of
some outliers on the right side of the distribution. Further investigation
suggested that most of these observations belonged to Streaming Services.
It seemed plausible that some streaming service logs lasted multiple hours,
and so these observations were kept in the dataset. However, four of these
outlier observations belonged to Messaging and Travel Planning. While
it is still possible that a participant’s Messaging or Travel Planning log
lasted more than nine hours, these observations were regarded as highly
unlikely and so they were excluded from the analysis. Next, the durations
were aggregated on application category, participant, and day. Thus, this
variable showed us how much time a person spent on a certain type of
activity per day.

Secondly, the frequency of use per category was created by adding
up all occurrences of a certain category per participant and day. The
most frequent categories were Instant Messaging, Social Networking, and
Streaming Services. On the other hand, Mechanical Turk, Remote Ad-
ministration, and Family Planning were among the least common ones.
Since one feature was created for each application category, there were 49

features capturing the frequency of use created.

4.3.3 Sequential Features

Additionally, sequential features were also extracted from the data. First,
frequent sequential patterns were obtained using the cSPADE algorithm
on the training data. Here, the sequential patterns were observed per
person per day, to match the way that procrastination was measured. Only
sequences of length two or longer were considered because sequences
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of length one are not different from just considering whether a certain
type of application was used that day or not. There was no maximum
length limitation set for the sequences. The parameter maximum size was
set to 1, as it was assumed that applications occur sequentially, so no two
observations could occur at the same time. Support was set to 0.95 to capture
the most frequent sequences. This was the lowest support that could have
been mined without running into computational constraints. These steps
resulted in 187 frequent sequential patterns with a length from two to
ten. Once the frequent sequences were obtained, an individual feature
was created for each of the frequent sequences. This feature represented
whether this specific frequent sequence was present in an observation or
not.

4.4 Oversampling

Figure 4 illustrates the distribution of the original procrastination variable
in the training dataset. The categories were noticeably imbalanced, where
most observations belonged to medium procrastination and the least to
high procrastination. This imbalance could lead to negligence of the least
frequent classes and overemphasis on the most common classes, as the
traditional classification models try to minimize error rates (Zou, Xie, Lin,
Wu, & Ju, 2016). Thus, oversampling was introduced to tackle this issue:
it increased the number of observations with the less common classes to
reduce class imbalances. For this purpose, the SMOTE (Synthetic Minority
Oversampling TEchnique) algorithm was implemented. SMOTE adds syn-
thetic data points to the original dataset by determining the space between
an observation and its nearest neighbour and then randomly selecting a
point from the space in between. This way, it does not generate duplicates
of the original points and introduces some variation, while maintaining
the plausibility of these data points (Chawla, Bowyer, Hall, & Kegelmeyer,
2002). Only the training data was oversampled and the distribution of this
newly obtained oversampled dataset is shown in Figure 4. Testing data
was not oversampled at any stage, to maintain its original properties.

4.5 Evaluation Methods

The dataset was divided into two parts: 80 percent of the dataset was
assigned to training and 20 percent to testing. In order the simulate how
such an algorithm would work when used as a smartphone application
where prediction is performed for the latest data, the newest data was
used for testing. The validation data was not separated at this point, as
cross-validation was performed later.
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Figure 4: Comparison of the original and the oversampled training datasets.

While some related literature used accuracy as the main evaluation met-
ric, F1-score was chosen as the main evaluation metric for this classification
task. Since there was a significant imbalance in the output variable classes,
a simple majority class model could still lead to relatively high accuracy.
Therefore, F1-score was selected, as it is commonly used to evaluate imbal-
anced classification tasks (Brownlee, 2020). The macro-average was chosen
since it assigns the same importance to all classes, even the more scarce
ones (Narasimhan, Pan, Kar, Protopapas, & Ramaswamy, 2016).

4.6 Algorithms and Software

The analysis was mostly performed in a Jupyter Notebook, using Python
version 3.8.8. For data cleaning, exploration, and processing Pandas version
1.2.4 (McKinney, 2010), NumPy version 1.20.1 (Harris et al., 2020), Seaborn
version 0.11.1 (Waskom, 2021), and Matplotlib version 3.3.4 (Hunter, 2007)
were implemented. Xgboost version 1.7.0 (Chen & Guestrin, 2016) was used
for the XGBoost classifier and Sklearn version 0.24.2 (Pedregosa et al., 2011)
was used for evaluation, grid search, the Naive Bayes classifier, Random
Forest classifier, and Decision Tree classifier. For oversampling, imblearn
version 0.9.1 (Lemaître, Nogueira, & Aridas, 2017) was applied. To identify
occurrences that contained frequent sequences, re (Regular expression
operations) version 2.2.1 (Van Rossum, 2020) was used. Sequential pattern
mining was performed in RStudio version 4.2.1 using arulesSequences
version 0.2.26 (Buchta, Hahsler, & Diaz, 2013) since R provided more
support for the implementation of the cSPADE algorithm.
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Table 2: Overview of the main results. The model that performed the best on the
testing data is marked in bold.

Macro F1-Score

Train Test

Baselines
Majority Class 0.225 0.219

Naive Bayes 0.383 0.270

Main Models

Decision Tree Non-Sequential 0.451 0.293

Sequential 0.427 0.300

Combined 0.475 0.319

Random Forest Non-Sequential 0.533 0.317

Sequential 0.562 0.308

Combined 0.568 0.314

XGBoost Non-Sequential 0.568 0.304

Sequential 0.452 0.290

Combined 0.534 0.338

5 results

This section presents the results of the two baseline models and the nine
main models. A full overview of the obtained macro F1-scores is provided
in Table 2.

5.1 Performance of the Baseline and Main Models

The baseline models, namely the Majority Class and Naive Bayes models,
achieved a relatively low performance on both the training and testing data.
This illustrates the difficulty of the prediction task at hand. All variations
of the Main Models achieved higher macro F1-scores than the baselines,
both on the training and testing data.

Out of all the main models, the highest performance on the testing
data was achieved by the XGBoost classifier with both sequential and
non-sequential features. It outperformed the XGBoost classifier with non-
sequential features by 3.4 percentage points and the XGBoost classifier
with sequential features by 4.8 percentage points on the testing data. The
second-highest macro F1-score was achieved by the Decision Tree classifier
with both sequential and non-sequential features. It outperformed the
non-sequential dataset by 2.6 percentage points and the sequential dataset
by 1.9 percentage points. Thus, these two models provided support for
the additional value of sequential patterns in procrastination prediction.
Nonetheless, this result seems to be to some extent model-specific, as it was
not strictly supported by the results of the Random Forest classifier. There,
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Figure 5: Multiclass confusion matrix for XGBoost classifier with sequential and
non-sequential features.

the set of non-sequential features achieved a macro F1-score higher by 0.3
percentage points compared to the combined feature set. In other words,
the findings might not be robust for other possible classification models.
Additionally, it is also worth mentioning that the sequential feature set by
itself performed worse than the non-sequential feature set on the testing
data in both Random Forest and XGBoost.

5.2 Error Analysis and Disparate Group Analysis for the Best-Performing Model

In this section, the results of the best-performing model (XGBoost classifier
with both sequential and non-sequential features) are examined more
closely. Firstly, a normalized confusion matrix was observed (presented in
Figure 5). The values obtained on the testing data were normalized over the
total number of observations. The model succeeded the best at predicting
medium procrastination, which was also the majority group in the dataset.
The worst performance was observed for the high procrastination label,
which was also the least common label. Thus, to some extent, the frequency
of labels still affected their prediction, even after introducing oversampling.
For completeness, the F1-scores per procrastination label are provided in
Appendix C (page 30).

To better understand how the best-performing model made its predic-
tions, the importance of individual features was also observed. This was
done by considering the F score value for each feature used in the model.
In this case, the importance of a feature was determined by calculating
how many times this feature was used in a tree. The results can be found
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Figure 6: Feature importance for XGBoost classifier with sequential and non-
sequential features.

in Figure 6. For formatting purposes, only the 10 most important features
were considered. Surprisingly, the most important feature was the fre-
quency of use of applications that fall in the Camera category, followed
by the duration of use of this category. Social Networking was considered
the third most important feature. Interestingly, all three types of features
(frequency, duration and frequent sequences) were represented in the 10

most important features.
Next, the difference in predictions made for men and women was

investigated. It is important to understand whether a model is better
suited to make predictions for certain groups, as this might affect the
generalization of the results. In the test set, approximately 56 percent of
the observations belonged to men, while 44 percent belonged to women.
The best-performing model achieved a macro F1-score of 29.6 percent for
women and a macro F1-score of 37.0 percent for men. This suggests that
the model is better suited for predicting the procrastination of men. This
finding was also illustrated in Figure 7, which shows the confusion matrices
per gender. All three labels (low, medium and high procrastination) were
better predicted for men than for women.

Lastly, the results presented in Table 2 show that all models, except for
the Majority Class model, achieved significantly higher macro F1-scores on
the training data than on the testing data. This suggests that significant
overfitting was present in those models, which was quite surprising since
grid search was introduced to mitigate overfitting. One possible reason
for the observed overfitting could be the chosen oversampling technique,
SMOTE. Santos, Soares, Abreu, Araujo, and Santos (2018) suggest that
overfitting, including the SMOTE technique, can in some cases lead to
overfitting. To investigate this suspicion, the best-performing model was
re-trained on the original, non-oversampled data. The hyperparameters
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(a) Confusion Matrix Women (b) Confusion Matrix Men

Figure 7: Comparison of normalized confusion matrices per gender, observed for
the best-performing model (XGBoost classifier with sequential and non-sequential
features).

were obtained using a grid search with the same specifications as in the
original model. The specifications of this model, as well as its performance,
are presented in Table 3. First, both the testing and training F1-score
decreased compared to the overfitted model (the testing score decreased
by approximately 10 percentage points). Secondly, the issue of overfitting
disappeared. This finding indeed points to SMOTE as a possible reason for
overfitting. An additional analysis of the topic of overfitting is provided in
the Discussion section.

6 discussion

The main aim of this thesis was to investigate the differences in perfor-
mances between models with and without sequential features for daily
procrastination prediction. For sequential features, frequent sequential
patterns were mined from the daily smartphone logs of the participants.
Non-sequential features consisted of the frequency of use of a category per
day and duration of use of a category of application. The best-performing
combination of a classifier and a feature set was also determined. The

Table 3: Specifications of the non-oversampled model: XGBoost with Sequential
and Non-Sequential Features. Learning R. stands for Learning Rate, Nr. of
Estimators stands for Number of Estinators.

Hyperparameters
Max Depth 8

Nr. of Estimators 200

Learning R. 0.1

Macro F1-Score
Train 0.225

Test 0.218
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main analysis suggested promising results for the inclusion of sequential
variables. While sequential patterns by themselves often achieved lower
F1-scores than non-sequential features, in two of the three classifiers, the
highest F1-score was achieved by a combination of the sequential and non-
sequential features. The overall highest testing F1-score was observed using
an XGBoost classifier with both sequential and non-sequential features.
This suggests that sequential features should not be considered a substitute
for non-sequential features, but they are more likely to complement each
other. However, since one of the classifiers (namely the random forest clas-
sifier) achieved the highest performance with only non-sequential features,
it is important to mention that the results might not extend to all types of
classifiers.

Martínez and Yannakakis (2011) presented similar findings with respect
to sequential and non-sequential features: for the prediction of anxiety
and frustration, the combination of sequential and non-sequential features
achieved the highest performance (their performance was measured in
terms of accuracy). The percentage point increase in accuracy caused by
using both sequential and non-sequential features was similar to the one
observed in this research (in both cases it was between 1 and 7 percentage
points). In addition, the authors also observed that the sequential features
by themselves performed relatively worse.

The results of this thesis slightly differ from the results of Alibasa et
al. (2022). Their model, which made use of sequential and non-sequential
features together with a random forest classifier to predict the mood of
individuals, achieved a macro F1-score of 55.6%, which was significantly
higher than the macro F1-score achieved in this thesis (33.8% for the
best-performing model). Their results might be better because also a
more complex non-sequential feature was implemented, namely labelling
applications as primary and secondary (in the case of multitasking). Indeed,
once this measure was removed, the macro F1-score dropped to 34.7%
which was a value really close to the F1-score achieved in this thesis. The
authors also reported that the random forest generally performed the
best in predicting mood. This contradicts our findings, which found the
Random Forest classifier to perform the worst out of the three classifiers.
It is also interesting to mention that the maximum support they found
for the frequent sequential patterns was 40%, while this thesis dealt with
support around 90%. These last two points might suggest that the data
that was used for this thesis carries slightly different characteristics than
the data used by Alibasa et al. (2022).

To answer the second sub-question, a confusion matrix was created
for the best-performing model. It showed that the best performance was
achieved for the medium procrastination class, while the worst perfor-
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mance was achieved for the high procrastination class. In other words, the
model was the most likely to miss the label that was the most important.
This suggests that this specific model might not be the best option for
a procrastination prevention application. This issue could be related to
representation since the worst performance was observed for the least
common subgroup, while the best performance was observed for the most
common subgroup. Oversampling was introduced to tackle this issue;
however, it was not fully successful. In the future research, this issue could
be addressed in a broader way. For example, starting at the very first step,
a wider sample could be considered. A larger quantity of data would also
provide the possibility to employ undersampling instead of oversampling.

Additionally, it was also examined whether the best-performing model
performed differently for men and women. The results suggested that the
macro F1-score of the best-performing model was higher by 7.4 percent-
age points for men than for women. While this issue was not explicitly
addressed in any of the previously mentioned papers, literature from other
fields provided support for these findings. For example, Jain et al. (2018)
reported that all of their nine classifier models presented in their paper per-
form better for emotion prediction of men than women. Their predictors
consisted of various speech-derived features. In the best-performing model,
the macro F1-score for men was higher by 7.4 percentage points than the
one for women. One of the possible explanations could be that predicting
female psychological states requires more features or more complex feature
transformations. This could be addressed by creating a separate model
for women; however, this is not an ideal solution for users who do not
identify with the binary gender classification. Thus, the solution to this
issue remains open for future research.

In conclusion, this thesis suggests that there are benefits to be gained
from using sequential patterns to predict procrastination. Thus, the se-
quential methods used in the prediction of other psychological states seem
promising for the prediction of procrastination. Nonetheless, the current
model is not reliable enough for a procrastination prevention application.
Thus, it serves more as a starting point for future research than a final
product.

6.1 Additional Limitations and Future Improvements

Previously, the presence of significant overfitting was identified. One
possible reason was discussed, which is that the chosen oversampling
technique, SMOTE, caused oversampling. Here, an alternative (but related)
explanation will be discussed in more in detail. Based on Santos et al.
(2018), it is also possible that the issue was not the oversampling method
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by itself, but the way the models were validated in combination with
SMOTE. The data used in this thesis was split into training and testing,
and later hyperparameters were selected using a grid search with 5-fold
cross-validation. Thus, each time a different subsection of the training
data was used as validation data. This also means that validation was
performed on the oversampled data. As it was not possible to separately
define validation data while using the grid search with cross-validation,
this could be the cause of overfitting. This reasoning is also in line with
the finding that overfitting disappeared once non-oversampled data was
used. In future research, this issue could be addressed by exploring other
oversampling methods (e.g., ADASYN) or different methods of validation
where the validation data remains isolated for the whole time so any
information transmission can be avoided.

In addition, sequential pattern mining was to some extent limited by
computation and time restrictions. In future research, some additional
settings of the sequential pattern mining algorithm could be explored. For
example, it could be tested how different restrictions on maximum pattern
lengths affect the outcomes. Alternatively, different specifications of the
minimum support could be investigated. While this thesis only imposed a
lower limit on the support value, potentially an upper limit could also be
introduced. This would help to filter out the sequences that are so common
that they are not particularly informative anymore.

7 conclusion

This thesis contributed to the understanding of procrastination in the
following ways. Firstly, it illustrated the possible benefits of using se-
quential features derived from smartphone logs as a complement to the
standard non-sequential features. Secondly, it investigated which model
was best suited for the prediction of daily procrastination. This was an XG-
Boost classifier combined with both sequential and non-sequential features,
which achieved a macro F1-score of 33.8%. This model also outperformed
both baseline models. Additionally, the results of the best-performing
model were examined more in detail. A confusion matrix suggested that
the model performed the best for medium procrastination and the worst
for high procrastination. The model also showed worse performance for
women than men. Lastly, even though the presented model is not reliable
enough to be used for a procrastination prevention app as it is, it provides
a starting point for future research. Phone logs, a less invasive and more
reliable way to collect data on user phone behaviour, have a great potential
for procrastination prediction in the future.
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8 data source/code/ethics statement

Work on this thesis did not involve collecting data from human participants
or animals. The original owner of the data used in this thesis retains
ownership of the data during and after the completion of this thesis. The
code used in this thesis will be made publicly available on GitHub. All
tables and figures used in this thesis were produced by the author.
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appendix a

Table 4: 20 most frequent missing applications and the newly assigned categories.

Name of Application Assigned Category

Herzick Houseparty Social
Miui Gallery Photography
Tinyco Potter Game Singleplayer
Prestigio E-reader Book Readers
Coloros Phone Personalization
Lilith Game Game Singleplayer
Android Launcher Background Process
Android Permission Controller Background Process
Takeaway Food & Drinks
Tilburg University Education
Dena Skyleap Entertainment
Osiris Student Education
Takeaway Driver Productivity
Coloros Recents Phone Personalization
Samsung Android Dialer Background Process
Home Workout Health Fit Abs Personal Fitness
Instructure Education
Pabbl Coupons
Ethica Logger Background Process
Android System User Interface Background Process
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appendix b

Table 5: 20 frequent sequences with the highest support.

Sequence Support

Instant Messaging, Instant Messaging 0.991

Instant Messaging, Social Networking 0.991

Social Networking, Social Networking 0.991

Social Networking, Instant Messaging 0.990

Instant Messaging, Streaming Services 0.985

Streaming Services, Instant Messaging 0.984

Streaming Services, Social Networking 0.984

Social Networking, Streaming Services 0.983

Instant Messaging, Internet Browser 0.983

Social Networking, Internet Browser 0.982

Internet Browser, Social Networking 0.981

Internet Browser, Instant Messaging 0.981

Streaming Services, Streaming Services 0.976

Internet Browser, Streaming Services 0.974

Streaming Services, Internet Browser 0.974

Internet Browser, Internet Browser 0.971

Phone Tools, Instant Messaging 0.969

Instant Messaging, Phone Tools 0.968

Phone Tools, Social Networking 0.967

Social Networking, Phone Tools 0.967

appendix c

Table 6: F-scores per procrastination label.

Label Procrastination F1-Score

Low 0.40

Medium 0.48

High 0.14
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