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Abstract

Interpretability in models which deal with human language is a field rich in questions and poten-
tial, and cutting-edge research brings innovation to the tools used to understand how deep learning
models reach an interesting level of capability in the classification, prediction and generation of
language. The present thesis focuses on the processing of text data by means of two different
transformer models, a POS-Tagger and a Language Model (henceforth LM), to investigate whether
these go through similar learning phases when given the same data tagged on different levels of
abstraction (namely syntax and lexicon). The intuition is that the models will have to undergo a
similar learning process as the POS-Tagger one, since syntactic acquisition is a pre-requisite to the
acquisition of higher levels of language, which has been researched in the field of deep learning by
taking inspiration from language acquisition.

The models have been trained on the WikiText dataset, which is a widely employed dataset in
language modeling and POS tagging tasks, often used for benchmarking models.

In order to investigate how the models learn, and whether they might follow similar learning
patterns, the SVCCA and CKA algorithms have been applied to measure and compare layers
similarity within and between the models, as well as the same layers across epochs during training.
A second goal of this thesis was to determine if the two methods yielded comparable results. These
algorithms have successfully allowed to find significant similarities between the first two layers of
the models, and also gain insights into the LM structure, suggesting that the two sets of layers
should share similar information and have learned similar features. Finally, the results of SVCCA
and CKA are shown, and a case is made on which algorithm may be more appropriate to use for
certain analyses.
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1 Introduction

Transformer models have revolutionized the NLP
field by applying what are called self-attention
blocks before a linear layer (Vaswani et al.,
2017). Before them, LSTM-based models were
the state-of-the-art choice for most language
tasks (Merity, Keskar, & Socher, 2017; Greff, Sri-
vastava, Koutník, Steunebrink, & Schmidhuber,
2015), although they had costly requirements be-
cause of their recurrence component. The com-
bination of a transformer model’s self-attention
block and the linear layer subsequent to it is usu-
ally referred to as an encoder, or decoder, de-
pending on the task; however, for language mod-
els, an encoder or decoder-only structure can be
used. Architectures involving transformers are
quite new, and are starting to be implemented
also in fields other than NLP (Parmar et al.,
2018), which is why there is a necessity and am-
ple space for research on their interpretability, es-
pecially when it comes to achieving it by means
of equally novel methods such as SVCCA and
CKA.

By applying SVCCA in a similar fashion as
in Saphra and Lopez (2018)1, this study intends
to check for correlations within and between lay-
ers of transformer models trained on language in
text form. The final objective is to determine, by
comparing the correlation between two models
trained on differently annotated data, whether
syntactic features are learned at the same time
as lexical ones, or differently, if they are acquired
at all.

The motivation behind the method chosen for
nodes inspection stems from the fact that, since

1In this study, layers from two different LSTM models
trained on text were compared. Results give indication
which suggests language models undergo similar learning
patterns as models trained on part-of-speech tags.

SVCCA is a simple, yet effective way to compare
layers, it can accommodate stringent deadlines
and yet be based on solid results, as reported in
other studies that applied it to models trained
on different tasks (these will be discussed in the
following section).

The use of CKA as a second similarity measure
is motivated by the need to confirm Kornblith,
Norouzi, Lee, and Hinton (2019)’s results, which
show this method as more sensitive to finding
similarities between layers in different models.

Although relevant work has already been done
on the interpretability of deep learning models
dealing with text, especially LSTM models (Gr-
eff et al., 2015), not as much research has been
carried out with regards to interpretability in the
case of transformer-based models. While the cur-
rent state of things makes it particularly chal-
lenging to find specific literature on a given issue,
it also accounts for the presence of wide scope for
analysis, a field full of potential for cases and re-
sults which have not yet been fully investigated.
It is precisely in this space that the present the-
sis and the choice of its particular tasks, language
modeling and POS tagging, have their roots.

By researching how the models learn to per-
form these tasks, the questions to which this the-
sis proposes to provide an answer are the follow-
ing:

• Can two transformer models trained on dif-
ferent levels of abrastraction learn similar
features, and therefore share encoded infor-
mation between some of their layers?

• When inspecting layer activations between
different models and within the same mod-
els, do SVCCA and CKA return different
similarity scores?

An answer to these questions will allow to de-
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termine which of these similarity metrics is more
appropriate to obtain some intuitions and addi-
tional information on the learning mechanism of
these models, giving a small contribution to the
very active field of interpretability, which has
been already quite engaged in analyzing trans-
former models.

2 Literature Review

Although the literature on interpretability is rich
in implementation of diagnostic classifiers, this
thesis takes on the challenge to adopt more
novel and less mainstream techniques of en-
coded information investigation. Because of their
widespread use, one would think that diagnostic
classifiers would be the most obvious choice for
this thesis. As this is not the case, an explana-
tion of their exclusion will here be presented.

Diagnostic classifiers are very successful in
testing hypotheses regarding the features learned
by models’ layers. They usually consist in a lin-
ear model trained on the activations of a specific
model layer with the task of testing an hypothe-
sis (Hupkes, Veldhoen, & Zuidema, 2017). By
way of example, a diagnostic classifier can be
trained on the activations of the first layer of
a LM to test whether the input sequence con-
sisted in an active or passive phrase; if the ac-
curacy of the classifier is high, it can be in-
ferred that the feature of voice is encoded in
such first layer. Diagnostic classifiers are, how-
ever, more expensive in computation and time
than similarity algorithms like SVCCA or CKA,
since they require to be trained for each layer
that has to be tested. The reason for choosing
these techniques over diagnostic classifiers is not
purely practical: as a matter of fact, diagnos-
tic classifiers are based on the assumption that

they decode information from a given layer, while
SVCCA and CKA do not decode information
and allow to test layers between different mod-
els trained on specific tasks. This makes these
novel and more obscure techniques dataset- and
architecture-agnostic (Raghu, Gilmer, Yosinski,
& Sohl-Dickstein, 2017). Such flexibility allows
to investigate and test interpretability hypothe-
ses in additional ways, which are not possible
with diagnostic classifiers.

Previous work by Saphra and Lopez (2018)
shows how, in LSTM models, syntactic features
are acquired earlier than semantic and/or topical
ones. This is allegedly how the network reaches
high performance, and, by freezing the layers
with the progression of training, it is possible to
obtain a model that can generalize better, and
have higher accuracy on the testing set. This
technique also allows for shorter training time.

In the field of machine translation, Bau et al.
(2018) apply different unsupervised techniques to
inspect nodes importance and rank them accord-
ingly, with the aim of identifying interpretable
information in these nodes. Once tested, these
techniques, among which is SVCCA, showed that
single neurons can encode grammatical infor-
mation, and that their manipulation can affect
translation quality. Bau et al. (2018) report on
how zeroing the top 10% nodes results in poor
performance, and, therefore, that the highly cor-
related nodes found with SVCCA do, in fact,
carry important information.

Finally, a similar process is known to be true
for, and apply to, children in the case of phonol-
ogy and language acquisition (Werker, Tees,
Best, Maye, & Sebastián-Gallés, 1984): this pro-
cess of starting from the complete array of pos-
sible sounds to culminate with the discrimina-
tion of only those phonemes that are useful to
the target language prior to production, is some-
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what similar to what children’s brains go through
when learning their first native languages.2

2.1 Language Modeling

Language modeling is a task which consists in
training a model to predict the next item in a
sequence of language symbols (words or char-
acters), so that its input is a sequence of sym-
bols, and its output is the same sequence and
the next most likely item according to the model
weights. There are many datasets available for
language modeling, and, although many usually
have a considerable size, such as WikiText-103
or, even more, WebText from GPT-2 (Radford et
al., 2019), the problem with these datasets is that
the training process takes a substantial amount
of time, and they are not particularly friendly to
early researchers. One of the advantages, how-
ever, is that much literature is especially based
on smaller datasets such as WikiText-2 or the
PennTreeBank corpora, that are more suited for
bench-marking and interpretability tasks, rather
than surprising performances. Moreover, re-
sources such as paperswithcode3 are great regis-
trars that allow to check with which model ar-
chitectures these smaller but widely employed
datasets have been used, and what results might
be expected.

2.2 Transformers

Transformer models are models that rely only
on self-attention encoder-decoder, encoder only
or decoder only architectures in order to process

2Children are able to discern between all phones pro-
ducible by the human vocal tract before the age of 4
months for vowels, and 12 months for consonants (Werker
et al., 1984).

3https://paperswithcode.com/

sequences. They are mostly known for their em-
ployment in NLP tasks such as machine trans-
lation, language modeling and more (Parmar et
al., 2018), where the task is to process input se-
quences of symbols to output sequences of sym-
bols, as is the case with both models’ architec-
tures in this work, which are made up only by
encoder layers.

As mentioned earlier in the introduction, be-
fore transformers, LSTM models (Long-short
term memory) based on recurrent neural net-
works (RNN), were the most employed for state-
of-the-art results in NLP tasks, such as: lan-
guage modeling, machine translation, POS tag-
ging, etc... (Merity et al., 2017; Greff et al.,
2015). However, because of their recurrence
component, they were computationally costly to
train and did not offer the same potential as
transformers, which get rid of the recurrent com-
ponent and are more parallelizable (Vaswani et
al., 2017).

In this section, the transformer encoder layer
will be explained, although a great resource in or-
der to understand well its structure can be found,
aside from Vaswani et al. (2017), in the blog ar-
ticle The Illustrated Transformer4.

First of all, the input to the encoder layer, in
this study case, is a sequence of symbols which
has gone through an embedding layer. Each word
vector in a sentence output by the embedding
layer will then be an input vector x to the en-
coder layer. For each of these inputs, a set of
query, key and value vectors < q, k, v > will
be produced. Each of these will have their own
weight vectors < Wq,Wk,Wv > and, after dot
products, we will have < q′, k′, v′ >.

Second, dot product is performed between q′

and k′T ; these are then scaled down by the square

4http://jalammar.github.io/illustrated-transformer/
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root of their dimension size (let it be D), so that
the outcome is the following:

q′ · k′T√
D

Subsequently, the result is passed to a softmax
function, and dot product between its output and
the v′ is performed. The below formula shows
how attention is computed. The output of one
attention head will be a.

Attention = softmax(
q′ · k′T√

D
) · v′

It is also possible to have more than one at-
tention head per layer: just by having n sets of
weights for the < q, k, v > vectors, n attention
heads output vectors of the same sizes can be
obtained, which can be concatenated and multi-
plied by a weight matrix Wa.

Finally, the whole attention block lies within
a residual block, after which layer normalization
is applied. Its output is passed through a fully
connected linear layer, which lies within a second
residual block, and after which there is a second
normalization layer.

2.3 Encoder-based models

Transformer models such as BERT (Devlin,
Chang, Lee, & Toutanova, 2018) are based only
on transformer encoder layers followed by a fully
connected layer, which practically acts as a sin-
gle decoder. The main feature of BERT language
models, in particular, is that they use MLM
(Masked Language Model), a masking technique
inspired by the Cloze task, which consists in
masking only a small percentage of the input to-
kens (e.g. 15%), and base the loss function on
the classification of those tokens (Devlin et al.,
2018; Rogers, Kovaleva, & Rumshisky, 2020).

Pre-trained BERT models have been shown to
hold more abstract and task-specific information
in the last layers, and more low-level features
in the first layers, although, when it comes to
syntax, it seems that middle layers are responsi-
ble the most for witholding syntactic information
(Hewitt & Manning, 2019). Analyzing the atten-
tion heads is something that has already been in-
vestigated, and while this can be difficult from a
qualitative approach, quantitative ones as in Ko-
valeva, Romanov, Rogers, and Rumshisky (2019)
have shown that attention heads can be removed
without impacting the performance, or can even
improve it, and the same applies to whole lay-
ers. It was for this reason that it was decided
to focus the similarity analysis on the layer ac-
tivations only, instead of on the single attention
heads. Nonetheless, short mentions will be made
with regards to some of the attention head acti-
vations in the models.

2.4 SVCCA

Singular Vector Canonical Correlation Analysis
(henceforth SVCCA) is an algorithm that allows
to obtain a similarity metric between nodes acti-
vations from two layers. The layers’ dimensions
do not have to be the same, and, for this reason,
SVCCA is quite convenient to use when compar-
ing layers from different models, and this anal-
ysis can even be applied to convolutional layers
(Raghu et al., 2017). SVCCA can also be used as
a tool for pruning nodes which do not carry rele-
vant information. One of the appealing qualities
of this algorithm is its simplicity and use of well-
known, established concepts from linear algebra
and statistics. In explaining this technique, the
layers’ activations will be simply referred to as
vectors.

The algorithm can be broken down into two
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steps:

1. A singular value decomposition (SVD) is
carried out on both vectors, reducing their
dimensionalities to a shared one, which can
explain 99% of the variance in each vector
(although this is not a fixed parameter).

2. Canonical Correlation Analysis is performed
to find similarity between the two vectors,
let them be a and b. This consists in find-
ing weights Wa and Wb that will align and
maximize correlation as much as possible be-
tween the vectors, so that a′ = Wa · a and
b′ = Wb · b. The output will then be the set
of correlations between each direction in the
linearly transformed vectors.

It becomes quite clear, then, the potential
which this tool has in calculating similarity not
only between a model’s layer at different train-
ing points, but also across different layers of the
same model or other models. This allows to ob-
tain intuitions as to what kind of information
layers from two models may share. Examples of
this can be found in Saphra and Lopez (2018),
Kornblith et al. (2019) and Bau et al. (2018) and
will be now briefly illustrated.

In Saphra and Lopez (2018), it is highlighted
how SVCCA is a better option than a diagnostic
classifier, since it can be applied just on the for-
ward pass of the model on the test or evaluation
set. This also applies to CKA.

In Kornblith et al. (2019), it is reported how
SVCCA can show similarity within the struc-
ture of models as other similarity techniques do
– CKA by way of example. However, when it
comes to identifying corresponding sublayers in
transformers’ layers, SVCCA seems to be less
sensitive in picking up similarities than CKA
with an RBF kernel.

Finally, in the case reported in Bau et al.
(2018), it is shown how pruning layers which have
high correlation drastically reduced the BLEU
score of machine translation models.

2.5 CKA

Centered Kernel Alignment (CKA) is a system
that has only recently been applied to measure
similarity between ANN’s layers, starting in Ko-
rnblith et al. (2019). In order to obtain CKA sim-
ilarity, the Hilbert-Schmidt Independence Cri-
terion (HISC) (Gretton, Bousquet, Smola, &
Schölkopf, 2005) has to first be obtained from
the activation vectors. In this case, too, the acti-
vation vectors have shape VS×F , where S is the
number of samples and F the number of features,
which are the result of the product of the se-
quence length and output dimension sizes of a
given layer. The result of HISC is then made
invariant to uniform scaling by normalization:

CKA(A,B) =
HISC(A,B)√

HISC(A,A)HISC(B,B)

In addition to a linear operation, an RBF ker-
nel has been tested as well. As it will be illus-
trated, results are similar for the two methods,
and this has been reported in the literature as
well.

CKA was chosen because it is efficient, easy
to compute, and seems to find similarity better
than other systems like SVCCA, CCA and linear
regression (Kornblith et al., 2019).

3 Methods

3.1 Tools and Algorithms

This research was conducted using exclusively
the Python programming language, version 3.6.
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The libraries that have been used or adjusted ac-
cording to the research needs will now be listed,
and can also be found in the requirements.txt file
in the main repository5.

• A forked version of PyTorch1.3.1. Two mod-
ules have been modified so that retrieval
of the activations would be more accessible
from the Transformer Encoder layer.

• TorchText 0.3.0, a package from PyTorch
which offers a wide variety of datasets, func-
tions and classes for creating pre-processing
pipelines that are tailored for NLP tasks.
TorchText also has a good integration with
SpaCy, which can be used as tokenizer
when pre-processing a dataset. Among the
datasets included in the package, there is
also WikiText-2.

• CCA_core, a module from Google’s SVCCA
repository6. This module has slightly been
modified by using some of the functions from
the PyTorch library instead of the ones from
Numpy, in order to easily implement com-
putations on GPU and make the process
slightly faster.

5https://github.com/andcarnivorous/
TestingTransformers

6The module can be found here https://github.com/
google/svcca

• CKA implementation from Kornblith et al.
(2019), from Google’s research Colab7.

• Seaborn and Matplotlib, for plotting the
data.

• MLFlow, to track the training process of
the models and obtain ready-to-use plots
of the metrics being tracked, such as loss
and perplexity scores. MLFlow is a very
nice open source tool which can greatly help
keeping track of several experiments. It
is quite flexible in its implementation, cov-
ers most mainstream frameworks (such as
scikit-learn, TensorFlow and PyTorch), and,
most importantly, it can make reproducibil-
ity easier if set up diligently.

• SpaCy, used solely for tokenization in the
LM, and for creating the target tags (target
values) in the POS Tagger model. SpaCy
can be used with several sets of tags, and
the one which was chosen for this study was
the Universal Dependencies v2 POS tag set.

3.2 Datasets

The dataset selected for this study was the
WikiText-2 dataset, designed for language mod-
eling. It contains 720 articles from Wikipedia,
for a total of 2,551,843 tokens and 33,278 unique
terms. These are divided into the following:
training set – 600 articles with 2,088,628 tokens;
validation set – 60 articles with 217,646 tokens
and finally, test set, with 245,569 tokens (Mer-
ity, Xiong, Bradbury, & Socher, 2016).

Another dataset, WikiText-103, is also avail-
able, with 28,475 articles, totaling more than 100

7https://colab.research.google.com/github/
google-research/google-research/blob/master/
representation_similarity/Demo.ipynb
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million tokens. Due to its size, however, this
dataset would have probably not been feasible
to work with, given the hardware restrains con-
cerning this study.

WikiText-2 is available in 2 different versions,
raw and pre-processed. The pre-processed ver-
sion has <unk> (unknown) tokens already im-
plemented in the text, and the only thing which
needs to be added are the <sos> (start of sen-
tence) and <eos> (end of sentence) tokens. In
this study, the raw dataset was used for the
POS Tagger, while the pre-processed dataset was
adopted for the Language Model.

The reason behind the selection of WikiText-
2, lies in the fact that it has been often used for
testing state-of-the-art architectures on language
modeling tasks, from LSTM models (Merity et
al., 2017) to the more recent GPT-2 architecture
(Radford et al., 2019). Moreover, pre-processing
of the WikiText-2 dataset is already well imple-
mented in TorchText, as mentioned in the Tools
& Algorithms paragraph as well.

3.3 Language and POS-Tagging mod-
els

The LM architecture consisted in a first em-
bedding layer, followed by a positional encoding
layer (explained in section 3.3.1), and 6 trans-
former encoder layers followed by a linear out-
put layer. The embedding layer would take a
sequence input and output a vector with 240 di-
mensions, which is then injected with positional
clues by the positional encoding layer, which also
performs .5 dropout normalization. The 6 trans-
former encoders have 12 attention heads and are
followed by a linear layer with 1024 dimensions
each. Every encoder also performs .1 dropout
normalization.

The POS-Tagger has the same embedding di-

mensionality, and a positional encoding layer,
which applies the same dropout set at .5. These
layers are followed by 2 transformer encoder lay-
ers with the same dropout as the LM and the
same number of linear nodes at the end of them.

Both layers have attention masks imple-
mented, which obscure the next item in the input
sequence in order to prevent the attention block
from being able to see the next items in the se-
quence.

The choice behind having less layers for the
POS-Tagger lies in the fact that, as a task, POS
tagging is less complex than language modeling,
and in Saphra and Lopez (2018) the POS taggers
have less layers than the LM.

3.3.1 Positional Encoding & Transformer
Encoder

The transformer encoder is made up by a self-
attention block followed by a feed-forward layer.
Each of these layers is wrapped into residual
blocks, and, between the embedding layer and
the first encoder layer, there is a positional en-
coding layer which injects positional information
in the vector output by the word embedding
layer. The first original type of positional encod-
ing presented, and possibly the most widely used
(Vaswani et al., 2017, pp. 5-6), is implemented in
this thesis.

3.3.2 Attention mask

The attention mask is a way to ensure that the
encoder layers cannot see the item (word vector,
in this case) which follows the present one in the
sequence. Allowing access to the next token to
the attention block would be equivalent to cheat-
ing, since the attention block would already know
what the next target values will be. Therefore,
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the attention mask is a square matrix where the
entries M_i,j on the diagonal and above it are
set to -inf.

To further visualize this, in Figure 1, the acti-
vations of each single attention head per layer can
be observed when a sentence is fed to the model.
These are the activations after dropout(query ·
keyT ). Instead, an example of head activations
of a model without attention mask can be found
in Appendix A.

It must be kept in mind that encoder-based
models like BERT normally use MLM, as ex-
plained in subsection 2.3. In this thesis, however,
a middle ground is found by using an architec-
ture for the LM which consists of only encoding
layers as with BERT, while the masking applied
to the input is a sequential mask like the one
applied to the decoder layers in Vaswani et al.
(2017). This choice was mainly inspired by the
example of sequence-to-sequence modeling given
in the official PyTorch documentation8, and al-
lows to study in detail a more homogeneous ar-
chitecture than the one in Vaswani et al. (2017),
without having to resort to more complex mask-
ing and loss computation.

3.3.3 Training

1. Language Model

For the LM, training was carried out for 50
epochs, using Stochastic Gradient Descent
as optimizer and a scheduler that would
reduce by 30% the learning rate every 4
epochs, starting from a learning rate of 5.8.
The batch size selected was 64, while the
sequence length 32; for the latter, it would
be optimal to go with longer sequences, but
this has quite an impact on the memory al-

8https://pytorch.org/tutorials/beginner/transformertutorial.html

Figure 1: Attention heads’ activations from a LM model
with 8 heads.

located on the GPU, which, for this experi-
ment, was limited to 4GB. Table 1 sums up
the parameters of the experiment, which can
also be found on MLFlow.

Parameter Value
batch_size 64
embed_dim 240
epochs 50
eval_batch_size 64
heads 12
layers 6
lr 5.8
seq_len 32
test_data.shape [3806, 64]
train_data.shape [32422, 64]
val_data [3377, 64]

The language model was evaluated based on
the perplexity score on the evaluation and
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test sets. A perplexity score is just an expo-
nentiation of the loss.

2. POS-Tagger Model

The POS-Tagger was trained for the same
amount of 50 epochs, with the same batch
and sequence sizes as the LM model. The
parameters that differ are the number of
layers and attention heads: where the LM
model has 6 layers and 12 attention heads,
the POS-Tagger has 2 layers and 8 attention
heads for each. Learning rate also differs,
starting at 1.8 and being reduced by 35%
every 2 epochs. Finally, the target values
for the LM were the 28865 possible words,
while, for the POS-Tagger, the 50 possible
POS tags from the SpaCy Dependencies v2
POS tag set constituted the target values.
Table 2 shows the parameters extrapolated
from MLFlow.

Parameter Value
batch_size 64
embed_dim 240
epochs 50
eval_batch_size 64
heads 8
layers 2
lr 1.8
seq_len 32
test_data.shape [3785, 64]
train_data.shape [32130, 64]
val_data [3353, 64]

The POS-Tagger was evaluated on the ac-
curacy on the validation and test set.

For both models, in order to obtain reliable
training loss by epoch metrics, the training loss

was computed at the end of each epoch by in-
ference without backpropagation on the whole
training set. Layer activations, instead, were
saved from evaluation of the validation set, which
also occurred after every training run with back-
propagation. The loss function employed for
both models was cross-entropy loss defined as:

Cross− EntropyLoss = −log

(
exp(x[class])∑

j exp(x[j])

)

3.3.4 Activations Collection and Process-
ing

In order to collect activations from the en-
coder layers of Transformer, the source code
from PyTorch functional.py and transformer.py
was changed, so that it would be easy to re-
trieve activations at the dropout point, at the
softmax(query · key) · value point, and at the
linear output point of each encoder block 9.

Activations were serialized for every epoch and
for every encoder layer, and encoder layers only,
at the end of every batch, organizing the serial-
ized activations by model name, layer, epoch and
batch number.

In oder to collect the activations in a way that
would be feasible, given the hardware limita-
tions, activations were serialized at the end of
every batch, creating files easy to manage with
limited RAM resources to later be concatenated
and processed for the similarity analyses. This,
in short, is the reason why the activations are not
saved in single files per epoch, but divided even
further. However, code that allows to retrieve
the activations and concatenate them by several
criteria is available in the repo as well.

9See commit link here
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Since for this study three main types of sim-
ilarities, listed below, have been tested between
and within models, for each one of these pro-
cesses a different approach has been taken in or-
der to process them without incurring into full
memory problems.

• Epoch by epoch against same epoch

• Epoch by epoch against final model

• Final layer by final layer

In the first case, in an iterative fashion, the 50
epochs of activations per layer have been divided
by 10, saving the similarity scores from SVCCA
and CKA at each iteration. The same was done
in the second case, going, however, with a higher
number of epochs per iteration, since all activa-
tions from the POS Tagger model were compared
only with the final epoch of the LM model’s same
layer. In the third and last case, everything was
computed in a single run, as it would easily fit
into memory.

3.4 Application of SVCCA and CKA
on Models’ Layers

3.4.1 SVCCA

SVCCA consists in a canonical correlation anal-
ysis (CCA) applied to the nodes’ activations of
two layers after they have been reduced in dimen-
sionality by means of singular value decomposi-
tion (SVD), to a point where their new dimen-
sions can still explain an arbitrarily-chosen por-
tion of the variance of the original vector. In or-
der to apply it, the function get_cca_similarity
available from google’s core_cca module10 was

10The module is available at the github repo
https://github.com/google/svcca

used on the collected activations, returning the
mean SVCCA score across the nodes of the two
layers being compared. The code from the mod-
ule was slightly changed using PyTorch tensors,
and tensor operations, moved to the GPU at cer-
tain points in order to save computation time (al-
though the difference has proved to be minimal).

3.4.2 Linear and RBF CKA

In order to carry out the analysis using CKA, the
functions defined in Kornblith et al. (2019) Co-
lab’s notebook 11 were used. These offer both
a linear version of the CKA and one with a
RBF kernel implementation. For this module, no
changes have been made, especially because com-
putation times for CKA with or without RBF
kernel are quite fast and computationally inex-
pensive compared to SVCCA.

11The notebook can be found at this address here
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4 Results

4.1 Training results

4.1.1 POS-Tagger Model

The POS-Tagger model converged after few
epochs, although training ran for 50 epochs. Fig-
ure 2 and Figure 3 illustrate the train and valida-
tion loss per batch, and the train and validation
accuracy per batch. The model scored 93.2% ac-
curacy on the test set, with a loss score of 0.324

Figure 2: POS-Tagger train loss.

Figure 3: POS-Tagger train accuracy.

The model, therefore, with only 2 layers and
8 attention heads, was able to converge to good
standards in a short amount of time. The atten-
tion head activations on a sample sentence can be
seen in Figure 4. These head activations are not
easy to interpret, and although some of them can
give hints and clues which allow to manually in-
fer possible embedded information, it cannot be
expected to perform such analysis on all of the

attention heads in a model across several input
samples. This is also the case with other models,
likes LSTM’s hidden cells, as Hupkes et al. (2017)
elegantly put it, such visual analyses are more on
the qualitative side rather than on the quantita-
tive. Moreover, as mentioned in subsection 2.3,
attention heads that do have information embed-
ded which may appear as essential for key tasks,
may not really be essential to the model which
could still perform well regardless (Kovaleva et
al., 2019).

Figure 4: POS-Tagger attention heads activations. Each
row is a layer, each column an attention head.

4.1.2 Language Model

The LM was trained for 50 epochs as well, using
as evaluation metric perplexity, which is an expo-
nentiation of the loss. After training, the model
managed to get to a perplexity of 163.8 on the
test set. Figure 5 shows the train and validation
loss during training. The result is not state-of-
the-art, but it was enough to compare the layers’
activations among themselves and against the ac-
tivations of the POS-Tagger, to obtain meaning-
ful and interesting results, which will be intro-
duced in the following paragraphs.
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Figure 5: Language Model training and validation loss.
Batch number on the x axis.

4.2 Similarity Scores Within Models

The results from the similarity scores between
layers within the same models will be presented
first. These similarity scores are relevant, in
that they give insights into when the layers have
started to converge, which, in practice, can be
useful to obtain faster training times by means
of Freeze Training, as reported in Raghu et al.
(2017). These insights are also effective when
trying to reproduce patterns which are often
found in NLP models, like the fact that lower lay-
ers converge faster than higher layers, and that
the first layers usually carry similar information
(Kornblith et al., 2019).

This pattern was found in the LM model es-
pecially thanks to the CKA algorithm in its lin-
ear form and with an RBF kernel as well, while
SVCCA did not pick up enough similarity to ad-
vance any suppositions on the information en-
coded in the layers, although it did work well to
show the converging process in the layers. As
Figure 6 and Figure 7 show, by obtaining linear
CKA and CKA with RBF kernel similarity scores
between all layers from the trained LM model,
the first 4 layers and the last 2 layers respec-
tively form clusters of similarities, meaning the
two groups are not as similar between themselves
as the layers within them are among themselves.
This is also confirmed by looking at the similar-

ity between each layer’s activations and its con-
verged form’s activations (Figure 8), where the
last two layers develop similarity differently and
with a lower score than the first layers. It is also
worth noticing that the CKA score for the sec-
ond and third layer is higher and raises before
than that of the first layer. Even if SVCCA did
not perform well when tested between different
layers, it performed quite well when testing sim-
ilarity between the same layer at different points
in training and its fully trained version. Figure 9
illustrates how CKA is able to pick up similar-
ity at earlier points in training, although SVCCA
outperforms it later in the analysis. It is impor-
tant to notice as well that, with both algorithms,
the point in which the layer’s similarity starts in-
creasing is the same, suggesting that both tech-
niques are capable of finding pivotal points in the
training process of a layer.

Figure 6: Linear CKA similarity score between layers of
converged LM model.
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Figure 7: CKA with RBF kernel similarity score between
layers of converged LM model.

Figure 8: CKA RBF similarity score of every LM’s layer
and its converged point.

Figure 9: LM layer 1 similarity scores against trained
layer.

Figure 10: SVCCA similarity score between layers of con-
verged LM model.
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Figure 11: CKA scores for both layers of the POS-Tagger
model.

For the POS-Tagger, both SVCCA and CKA
have successfully found increasing similarity be-
tween the 2 layers of the model and their con-
verged forms. Figure 11 highlights the CKA re-
sults while, in Figure 12, the RBF with threshold
.5 are compared to SVCCA results. It is worth
noticing how SVCCA seems to outperform CKA
at later points in training, when analyzing the
same layer against its trained activations, and
the same is in the case of the LM.

Figure 12: CKA and SVCCA scores on the first and sec-
ond layer of the POS-Tagger model.
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4.3 Similarity Scores Between Models

When similarity scores between the first 2 layers
of the POS-Tagger model and the first 2 layers of
the LM model were tested, CKA has proved to
pick up similarity between activations substan-
tially better than SVCCA. The SVD-based algo-
rithm showed a similarity peaking at around .46
for the first layers, and .44 for the second lay-
ers. On the other hand, CKA has consistently
provided meaningful results. The algorithm was
used with its linear configuration and two RBF
kernels, one with a threshold of .5 and the other
with a threshold of 1. As Figure 13 and Figure 14
illustrate, interestingly, the second layers’ CKA
similarity scores have more consistent and higher
trends than the ones of the first layers. Addition-
ally, the second layer seems to slightly decrease
and plateau after initially reaching high similar-
ity, while the first only shows an increasing trend
that eventually plateaus. However, they both
seem to reach the point of similarity saturation
before the 20thepoch.

Figure 13: CKA scores: POS-Tagger layer 1 against
trained LM layer 1.

Layer SVCCA CKA Linear CKA RBF .5 CKA RBF
1 0.46 0.90 0.85 0.92
2 0.44 0.887 0.889 0.91

Table 1: POS-Tagger trained layers similarity scores
against corresponding trained LM layers.

Figure 14: CKA scores: POS-Tagger layer 2 against
trained LM layer 2.

Given the results on the corresponding trained
layers (Table 1), CKA performs better than
SVCCA between layers from transformer models
trained with different targets, but same datasets,
and different number of encoder layers. The simi-
larity scores from the algorithm may give sugges-
tion that the encoder layers from the two mod-
els may contain similar information, making it a
valid tool in investigating what information may
be encoded in the nodes of different models. In
particular, the linear kernel and the RBF kernel
with threshold set to 1 have proven to find higher
similarity than SVCCA and the RBF kernel with
threshold on .5.

By following the example of the sanity tests for
similarity indexes performed in Kornblith et al.
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CKA Linear CKA RBF CKA RBF .5 SVCCA
LM L1 LM L2 LM L1 LM L2 LM L1 LM L2 LM L1 LM L2

POS L1 0.90 0.92 0.92 0.86 0.85 0.73 0.46 0.45

POS L2 0.80 0.88 0.85 0.91 0.86 0.88 0.45 0.44

Table 2: Similarity scores between the first two trained
layers of the POS-Tagger and LM models. Bold numbers
represent the highest scoring similarity between the two
layers.

(2019), Table 2 shows which layer between the
first two of the LM has higher similarity to each
of the POS-Tagger layers. Only the CKA with
RBF kernels found highest similarity for each
layer with the corresponding layer of the other
model, while SVCCA and CKA with linear ker-
nel only had one layer correspond to the one at
the same index in the other model. These re-
sults, especially the one from the RBF kernels,
add up to the evidence that the first two layers
may carry analogous information.

Finally, it is worth noting how the differences
between the SVCCA scores are of .01, while the
ones from the different CKA configurations hold
wider differences, except in the case of the first
POS-Tagger layer with the linear CKA. This is
supplemental evidence in favor of CKA as a more
sensitive tool to pick up similarity.

5 Discussion

This thesis had set the goal of testing two
main hypotheses – whether transformer mod-
els trained on different levels of abstraction en-
code similar information, and whether CKA
and SVCCA give similar results when inspecting
layer activations.

The results from subsection 4.3 have shown
that there is, indeed, high similarity between the
first two layers of the POS-Tagger model and

the first two layers of the LM. These similar-
ities were successfully tracked during training,
and displayed increasing trend until saturation
for the first layer. Moreover, testing which layer
would score more similar to either of the other
model also confirmed that, by using CKA with
an RBF kernel, there is correspondence between
the indexes of most similar POS-Tagger layers
to the first two of the LM, suggesting that they
carry similar information. It must be kept in
mind that these similarity metrics give intuitions
at best as to what kind of information could
be encoded in deep neural network layers: it is
not possible to determine their contents by these
means only. They do provide, however, mean-
ingful insights when used with models trained on
different levels of abstraction (syntax and lexical,
in the case of this thesis) or different datasets,
since, as it is mentioned in Saphra and Lopez
(2018, p. 6), a model trained on a specific level
of abstraction, such as syntax, should be similar
to a model that encodes that levels of abstrac-
tion. Given this premise, and by accepting the
presuppositions as to what these similarities in-
dicate, it can be stated that transformer models
trained on different levels of language abstrac-
tion do encode similar information in their lower
layers, and since the POS-Tagger is trained on
syntactic classification, it is possible that that is
the type of information encoded in the first layers
of the LM.

With regards to the second hypothesis, it has
been determined that SVCCA and CKA clearly
differ in the results they give when testing layer
similarities. As already reported in Kornblith et
al. (2019), CKA finds earlier layers in the net-
work, reaching a level of similarity saturation
earlier than higher layers. This was confirmed in
other works, such as in Raghu et al. (2017), and
in the present research as well. SVCCA seems to
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work especially well when tracking the similarity
of a single layer across its training process; how-
ever, in this instance too, CKA has shown to de-
tect similarity earlier than SVCCA. Without tak-
ing into consideration the computation times in-
volved in the processing of these two algorithms12

(CKA being twice as fast as SVCCA partially on
GPU), CKA has resulted to be the better tool to
be used when investigating transformers models,
in order to find similarity between different mod-
els, within the same model, or across training.
Particularly, it was able to show the structure of
the LM model, and which layers were more sim-
ilar to each other, suggesting they may encode
similar information. All of this seems to indi-
cate that SVCCA might be more suited to find-
ing similarities which are more obvious, since it
has been shown in subsection 4.3 that similar-
ity started to increase and saturate at the same
time with both algorithms, while CKA may be
better in finding similarities based on the tails
and shape of the distributions, since it centers
the points of similarity found, so that compar-
isons between not only different layers, but also
different models or differently initialized models
(Kornblith et al., 2019) may return more mean-
ingful results.

6 Conclusion

Research into interpretability of deep learning
models, especially NLP ones, is a vibrant and
active field which offers many opportunities and
potential to find hints or even answers on how
these models learn. This thesis has taken on

12Saphra and Lopez (2018, p. 3263) still make a valid
point as to how SVCCA is better than a diagnostic clas-
sifier, since there is no training involved in the use of the
algorithm, and so is true for CKA as well.

the challenge to gain insights into the shared
encoded information between two transformer
models trained on different levels of linguistic ab-
straction, by taking inspiration from previous, al-
though very recent, work, and testing algorithms
which have not yet seen wide-spread implemen-
tation, especially in NLP tasks. The results
have been promising, considering the physical
and time-related limitations, confirming litera-
ture previous findings and successfully answering
the hypotheses put forward. CKA and SVCCA
have been proved to give important insights into
models’ architectures and also test shared infor-
mation between layers from models trained dif-
ferently. The first, in particular, has been able to
suggest similar features are learned by the first
two layers of both models. At the same time,
SVCCA has been shown to pick up important
points in the learning process of a layer, although
it has not been successful in finding similarities
between the models.

Further research into transformer models
trained on different data and different levels of
abstraction is needed, and would allow for a
better understanding on how these architectures
learn features, and where specific types of infor-
mation are encoded. While studies of this nature
on language models require significant resources,
they can shed light on systems which would be
more cryptic otherwise. Hopefully, more tests
like these will be performed in the near future,
and even better systems than the algorithms em-
ployed here will surface.
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Appendices

A Attention Heads

Figure 15: Attention heads activations of LM model with
6 layers and 8 attention heads per layer, trained without
attention mask.
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