
P R E D I C T I N G T H E D W E L L T I M E
F O R T H E N E X T M O B I L E P H O N E

A P P L I C AT I O N

U S I N G L O N G S H O RT- T E R M M E M O RY N E U R A L
N E T W O R K S

K AT H A R I N A P R I T Z L

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university



student number

2077635

committee

dr. Drew Hendrickson
Büşra Özgöde Yigin

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

June 24, 2022

word count

8761/8800

acknowledgments

I would like to sincerely thank my supervisor, Dr. Drew Hendrickson,
for his guidance and support during this semester. His intellectually
challenging ideas always helped me to stand up to all the challenges
I encountered. I also want to give my thanks to George Aalbers for
providing me the dataset which was used in this thesis. Finally, I
would like to thank my partner, Konrad, and my mother, for their
unconditional support, without which I would not have been able to
finish my degree with the results I obtained.



CONTENTS

contents

1 Introduction and Research Goal 1

1.1 Motivation and Relevance 2

1.2 Research Questions 3

2 Literature Review 4

2.1 Prediction of Smartphone Engagement 5

2.2 Next-App Prediction for Smartphones 6

2.3 Dwell Time Prediction for Streaming Services 7

3 Methodology 8

3.1 Models: Comparison of MLP, RNN, LSTM, and GRU 8

3.2 Proposed LSTM Structure - Stateful vs. Stateless Train-
ing 10

3.3 Treatment of Categorical Features - Embeddings Method 11

3.4 Baselines 12

4 Experimental Setup 12

4.1 Description of the Dataset 12

4.2 Data Cleaning 13

4.3 Missing Data Treatment 14

4.4 Feature Engineering and Transformation 15

4.4.1 User-Related Features 15

4.4.2 Contextual Features 15

4.4.3 App-History Related Features 16

4.4.4 Oracle Features 16

4.4.5 Feature Transformation 16

4.5 Construction of Target 16

4.6 Training-Validation-Testing Split 17

4.7 Data Pre-processing for LSTM and MLP 17

4.8 Hyperparameter Tuning 18

4.9 Robustness Check 20

4.10 Evaluation Metrics 20

4.11 Software 20

5 Results 21

5.1 Hyperparameter Tuning of the Neural Networks 21

5.2 Performance of the Baselines, the MLP, and the LSTM on
the full feature subset 23

5.3 Error Analysis 23

5.4 Performance of the MLP and the LSTM on different Feature
Subsets 24

5.5 Performance of the LSTM on the Cold-Start Problem 26

6 Discussion 27



CONTENTS

6.1 Predictive Performance of the MLP and LSTM compared to
the Baselines 27

6.2 Discussion of the Model Performance on different Feature
Subsets and the Trade-Off between User-Privacy, Computa-
tional Efficiency, and Accuracy 28

6.3 Capabilities of Generalization 29

6.4 Limitations and Further Recommendations 30

6.5 Contributions and Societal Impact 30

7 Conclusion 31

8 Data Source/Code/Ethics Statement 32

a Appendix A 36

b Appendix B 36

c Appendix C 37

d Appendix D 38

e Appendix E 39

f Appendix F 42

g Appendix G 43

h Appendix H 44



P R E D I C T I N G T H E D W E L L T I M E
F O R T H E N E X T M O B I L E P H O N E

A P P L I C AT I O N
U S I N G L O N G S H O RT- T E R M M E M O RY N E U R A L N E T W O R K S

katharina pritzl

Abstract

Although prior research has addressed the task of next-app predic-
tion, the area of predicting app engagement is widely unresearched.
Since engagement predictions for mobile-phone applications can help
to personalize features related to app usage, thus leading to a higher
user satisfaction, the present work introduces a deep-learning ap-
proach to address this research gap. By proposing a generic LSTM
that is capable of including multiple independent app usage se-
quences, the multiclass classification problem of dwell time prediction
is addressed. Not only a solution for the cold-start problem, but also
a framework for other areas where vast amounts of independent
sequences have to be processed is introduced. Additionally, the trade-
off between users’ privacy, accuracy, and computational efficiency is
investigated by comparing the performance of the proposed LSTM
and an MLP trained on different feature subsets. As the basis for this
research, a dataset of 186 users with over four million app records
was used. While the LSTM outperformed the MLP in all tests, and
was particularly suited for working on a reduced feature subset, the
best performing LSTM reached an accuracy of 0.46. For the cold-start
problem, an accuracy of 0.41 could be reached.

1 introduction and research goal

Since the deployment of the first smartphones in the early 2000s, the use
of mobile phone applications has become an indispensable part of every-
day life. In reaction to the growing number of available mobile phone
applications, research in the area of machine learning has focused on how
engaging with smartphones can be made more comfortable by developing
app recommendation systems based on the prediction task of determining
which app a user is going to open next (Cao & Lin, 2017).
Research related to next-app predictions can mainly be utilized for an

1



1 introduction and research goal 2

improvement of smartphone operating systems. However, for app service
providers, developing insights into how users engage with a specific appli-
cation is more important than knowing which app a user is going to open
next. One simple but strong metric for measuring users engagement with
online services is the dwell time, the time a user spends engaging with a
service (Lalmas, O’Brien, & Yom-Tov, 2014).
Although the area of next-app predictions is well researched, including
the use of novel deep-learning approaches (Katsarou, Yu, & Beierle, 2022;
Lee, Cho, & Choi, 2019; Xu et al., 2020), surprisingly little research has
been conducted in the area of predicting app engagement. At this time,
only two articles have addressed a related task by relying on traditional
machine-learning models (Mathur, Lane, & Kawsar, 2016; Tian, Zhou, &
Pelleg, 2021). A shortcoming of those is that they neither investigate the
application of deep learning models, nor do they mention how to deal
with the cold-start problem, a situation where predictions have to be made
for users who were not included in the training data.
Accordingly, there is still a research gap related to app engagement predic-
tions, a gap that becomes especially interesting by pointing to the recent
prominence of LSTMs for tackling sequential prediction tasks. In response
to that, the main research goal of this paper is to adapt a deep-learning
approach for predicting the dwell time for smartphones on an application-
based and user-independent level treated as a multiclass classification
problem.

1.1 Motivation and Relevance

Getting in-depth insights into users’ app engagement is, from a business
perspective, crucial for the long-term success of mobile phone applications.
Being able to forecast the time a user will stay on an app enables app
service providers to better plan when to place advertisements, in-app noti-
fications, or when to display which content. Personalizing those features
can increase the users’ satisfaction, leading to longer and more frequent
usage, better reviews, and, therefore, to the long-time success of the app.
From a societal and scientific perspective, it is particularly important to
propose an approach for improving users’ satisfaction without sacrificing
their privacy. Therefore, the present research will investigate which in-
formation is truly necessary for generating reliable predictions. Taking a
critical look at the trade-off between computational efficiency, accuracy,
and protection of sensitive data is a crucial part of practicing responsible
AI, where it is the responsibility of the scientific community to fulfil the
rising societal demands for privacy and explainability (Arrieta et al., 2020).
In particular, when using deep-learning models, known to be black boxes,



1 introduction and research goal 3

a special awareness for the used features has to be raised. While this
research is not focused on increasing the explainabilty of those models, it
does try to propose an approach for reducing the amount of information
needed paying respect to privacy concerns. To preserve computational
resources where possible, it additionally investigates if a complex and
computationally more demanding deep-learning structure trained on a se-
quential version of the data is indeed advantageous compared to a simpler
one.
Thereby, the framework for a model capable of including multiple indepen-
dent sequences can not only be used in the area of smartphone predictions
but can also be adapted to other domains. Since including multiple data
sequences in one model comes with a risk of biasing the results towards
the longer ones, the aim of the present work is to develop a framework for
preventing such a bias, which is particularly important from a scientific
viewpoint.

1.2 Research Questions

Based on the outlined research gap and the demonstrated societal relevance,
the main research question of the present work is as follows:

MQ To what extent is it possible to predict the dwell time for the next mobile-
phone application a user is going to open, based on a combination of historical
app-log data, contextual, and user-related features with an LSTM trained
by following a generic modeling approach?

A commonly used distinction to investigate feature-relevance in the field of
smartphone predictions is to differentiate between user-related, contextual,
and app-history related features. While user-related features describe fea-
tures related to characteristics of the smartphone user, the term contextual
refers to features like time and location. App history-related features refers
to characteristics related to previous app usage.

The research will be guided by the sub-questions shown below:

RQ1 To what extent will the use of an LSTM architecture improve the accuracy
for dwell time predictions on an application-based level compared to a feed-
forward neural network, namely MLP, both trained user-independently?

Guided by the research gap in the literature, the aim of the present work
is to adapt the use of neural networks for the prediction task of app
engagement. In particular, the performance of a more computationally
demanding LSTM, which is capable of capturing long-term dependencies
by utilizing the sequential character of the data, will be explored and



2 literature review 4

compared to the performance of an MLP that has no access to the sequential
app history and is more computationally effective.

RQ2 To what extent will the proposed user-independent LSTM structure bias the
results towards users for whom more training data is available?

To check whether the proposed generic modeling approach for the LSTM
is biasing the results, an error analysis dedicated to this question will be
conducted.

RQ3 Which feature subset can reach the best predictive performance for the task of
dwell time prediction for both MLP and LSTM, respectively, is it possible to
minimize user-related and contextual features to prevent privacy concerns
while keeping the accuracy of the proposed models high, and what differences
can be seen between both models using different feature subsets?

The trade-off between model complexity, accuracy, and user privacy is
investigated in detail by training the proposed LSTM and an MLP on
different feature subsets.

RQ4 To what extent can the proposed LSTM structure solve the cold-start prob-
lem?

Since training individual models for each user is both computationally
inefficient and not suited for getting predictions for unseen users, the
predictive performance of the proposed generic LSTM will be tested on
the cold-start problem.
All abbreviations which are used throughout the present work can be
found in Appendix A.

2 literature review

The area of predicting engagement for smartphone users is widely unre-
searched. To the best of my knowledge, only Tian et al. (2021) and Mathur
et al. (2016) addressed similar tasks. Accordingly, the following section will
first explore their works before switching to a broader scope by discussing
two related and highly researched areas: next-app predictions and dwell
time predictions for streaming services. While the findings of works related
to the area of next-app prediction provide insightful domain knowledge
needed for an in-depth understanding of smartphone usage, and how
it can be modeled for deep-learning approaches, the field of dwell time
prediction helps to illuminate challenges related to the prediction task at
hand, despite the underlying context.



2 literature review 5

2.1 Prediction of Smartphone Engagement

First, a distinction between measuring user engagement in terms of attention-
based engagement and in terms of usage patterns has to be made (Lalmas
et al., 2014). While the first one is hard to measure and can only be cap-
tured using self-report surveys or physiological measures, the latter can
easily be recorded automatically. Due to this nature, the latter is more
suited for machine-learning approaches which rely on the availability of
vast amounts of data and is therefore the choice for the present work.
Nevertheless, Mathur et al. (2016), who follow the opposite direction by
using the EEG signals of users to derive their engagement-scores for mo-
bile phone sessions, deliver an important starting point for predicting
app-engagement. By inferring binary engagement labels from EEG signals,
which are then used as targets for training an SVM classifier on contextual
features, they reach an F1-score of 0.82. Since their approach is based on
an expensive study design, its biggest weakness is the lack of feasibility
to use it for real-world applications, leading to the open question of how
users’ engagement can be modeled else.
Tian et al. (2021) present a solution for that by deriving the engagement
level from the user’s dwell time in dependence of the corresponding over-
all use-duration quantiles of the underlying app category, thus modeling
users’ engagement easily as a multiclass classification problem. By doing
so, they avoid running into the problem of a highly skewed distribution of
the target variable, which is common in the area of dwell time prediction.
They use a boosting-based model that is capable of jointly predicting a
user’s next app choice, and the expected engagement level for it, reaching
an accuracy of 0.485. While they find that historical patterns are most
important for predicting the engagement level, they do not utilize a model
which is capable of remembering historic usage patterns on its own but
provide this information to the model in the form of additional features.
As with Mathur et al. (2016), a shortcoming of their work is that they do
not treat the user’s app events individually but aggregate the dwell time
for similar apps within one smartphone session. Additionally, neither of
them discusses how to deal with the cold-start problem.
The discussion of the small scope of existing studies shows that there is
still a research gap in the field of app-engagement prediction. In particular,
the recent prominence of RNNs in the field of next-app prediction can
give valuable insights into how to adapt a deep-learning approach for the
present work, one that is capable of fully utilizing the predictive power of
historical app usage sequences.



2 literature review 6

2.2 Next-App Prediction for Smartphones

Whereas early research in the area of next app prediction first focused on
classical machine-learning models like Bayes classifiers (Shin, Hong, & Dey,
2012) or Markov models, (Zou, Zhang, Li, & Pan, 2013) trained on mainly
contextual features, more recent research started leveraging the ability of
RNNs to capture long term dependencies in app sequences. By doing so,
the recorded app history of a user is treated as a sequence consisting of
individual app events where the app event at timestep t + 1 is assumed to
be influenced by the app events at previous timesteps.
Lee et al. (2019) investigated the performance of different RNN architec-
tures for next-app prediction of dual-display devices in comparison with
non-deep-learning models. The fact that RNNs, LSTMs, and GRUs out-
perform standard models supports the general idea of treating prediction
tasks related to app events as sequential problems. While a stacked LSTM
works best for their prediction task, with an accuracy of 0.75 for predicting
the Top-3 apps, they find that adding contextual features to the app history
is not crucial for the predictive performance of the models.
In contrast, Xu et al. (2020) detected that contextual features related to time
and location can leverage the predictive performance in a similar area. By
training an individual LSTM for each user, they reached a precision of 0.8.
According to the conflicting results about feature importance, the current
state of the literature does not provide an answer about which features
should be used or omitted for predicting app usage. Since the studies
in the field of app-engagement prediction also did not investigate this in
detail, it remains an open research question that will be addressed in the
present work to get more clarity.
A shortcoming of both studies is that they do not mention how to deal
with the cold-start problem, while they treated the prediction task as user-
specific rather than generic. In contrast, Chen, Maekawa, Amagata, and
Hara (2021) propose a solution for the cold-start problem by creating user-
specific training datasets from a pool of source users. Using a two-layer
LSTM, they reached an accuracy of 0.56. Although this approach can be
used to make predictions for new users, it is computationally expensive
since it relies on individually trained models rather than on a fully generic
model.
Instead, Katsarou et al. (2022) present an approach based on a generic
LSTM trained on all of the combined user data. By using only phone-
history related features to reduce privacy concerns, they reached a recall
of 0.76 for the cold-start problem on the 500 most frequently used apps.
To utilize information which can be found in the relationships between
different applications, they incorporated an embeddings approach where



2 literature review 7

each app name is converted into a vector in space before feeding it into the
LSTM. Since a similar method will be adapted for the present work, entity
embeddings will be described in more detail in section 3.
Although several studies compared different RNN architectures and fea-
ture subsets, a comparison of RNNs with standard FFNNs is still missing,
thus making it hard to determine how much predictive accuracy can be
added by using more complex structures. Therefore, the present work will
compare the use of an RRN with an MLP to provide an answer to this
question.

2.3 Dwell Time Prediction for Streaming Services

To further explore the difficulties which can be encountered by performing
a dwell time prediction task, a quick look into the area of predicting en-
gagement for streaming services provides useful information.
Vasiloudis, Vahabi, Kravitz, and Rashkov (2017) conducted the first research
related to the prediction of session-length in music streaming services.
While treating the task as a regression problem with gradient-boosting
trees, they emphasized the difficulties arising from a highly right-skewed
distribution, which is common in the field of dwell time prediction. Addi-
tionally, they dealt with problems related to the huge influence of external
factors in the context of a user’s session length. Since the session length is
determined by factors which cannot easily be recorded, building a predic-
tion model is a challenging task which needs a careful consideration with
regard to the features used. To address the problem, they relied mainly on
contextual and user-related features.
In contrast, Wu, Rizoiu, and Xie (2018), who conducted the first large-scale
study on video watch time, used features related to the consumed content
for predicting the average watch-time percentage for videos. Similar to the
research in the area of next-app predictions, there is no agreement on the
question of which features work best for predicting engagement. At the
same time finding a suitable feature subset seems in particular important
in the field of engagement predictions to counter the huge influence of
external factors. Since no agreement on the question of best-performing
features could be found in the literature, several feature subsets, including
contextual, user-related, and phone history-related features, will be tested
in the present work. As already mentioned, the approach used by Tian et
al. (2021) for converting the numerical dwell time to a multiclass target will
be adapted for the present work since it avoids the problems of a highly
skewed distribution of the target variable.



3 methodology 8

3 methodology

The following section describes and supports the methodology chosen to
answer the proposed research questions. First, different neural networks
will briefly be described and compared. Second, the proposed LSTM struc-
ture will be explained in more detail. Subsequently, the entity embeddings
method chosen for treating categorical features will be introduced. Last,
an overview of the implemented baselines will be given.

3.1 Models: Comparison of MLP, RNN, LSTM, and GRU

A MLP is known as the simplest FFNN where an input, X, is processed
through a set of fully connected nodes with the goal of approximating a
function, f , used for mapping X to an output, y (Goodfellow, Bengio, &
Courville, 2016). Since it has no feedback connections, where the output
is fed back to the model as additional input, its main disadvantage is
the assumption of independent input datapoints, which is a particular
limitation when dealing with sequential data (Goodfellow et al., 2016).
To address this limitation, the concept of RNNs was introduced (Rumelhart,
Hinton, & Williams, 1986). In contrast to MLPs, RNNs can refer back to
the full history of already-processed inputs for mapping a new input to an
output (Graves, 2013). To allow for this, RNNs share the same parameters
across several timesteps instead of having separate weights for each input
feature. The use of timesteps does not imply that the underlying data has
to be in form of classical time-series data with equally spaced units; RNNs
can also be trained by processing sequential data where only the position of
a datapoint in a sequence, but not the time dimension as such, is important
(Goodfellow et al., 2016). Looking at the prediction task at hand, where the
data consists of app sequences, the latter one is the case. The most crucial
disadvantage of a classical RNN is that, in practice, the historical context
that can be leveraged for predicting is quite limited due to a problem
known as the vanishing or exploding gradient. This problem arises when
the error in an RNN is backpropagated through long sequences leading to
either exponentially increasing or decreasing weights.
LSTMs, which were first introduced by Hochreiter and Schmidhuber (1997),
are a specific version of RNNs developed to deal with this problem. By
making use of a special gate structure, LSTMs regulate the information
flow of the network in a way that allows for only memorizing important
information while also forgetting information which is no longer needed
(Graves, 2013).
The LSTM and its different gates work as follows: First, the forget gate, ft,
decides which information from the previous cell state should be dismissed



3 methodology 9

Figure 1: Functional scheme of the proposed LSTM architecture trained on equally-
sized batches of sequential user data. Source: the author’s illustration based on
Christopher Olah (2015)

by processing the data from the current input, ht, and the output from
the previous unit, Ct−1, through a sigmoid layer, σ. Next, the input gate,
it, decides which data in the cell state should be updated and which
new data should be added. Subsequently, the cell state, C̃t, is updated
accordingly. Last, the output gate, ot, decides which parts of the cell state
will be used for the output, ht, and generates it accordingly. The zoom-in
in Figure 1 shows a graphical illustration of the workflow of the LSTM. A
mathematical formulation can be found in Appendix B.
An alternative for LSTMs is the use of GRUs, which were first developed
by Cho, van Merrienboer, Bahdanau, and Bengio (2014). They make use of
a similar structure but only consist of two instead of three gates making
them more computationally efficient. At this time, the scientific community
cannot state with certainty which structure is better suited for dealing with
long-term dependencies since this is mostly reliant on the underlying data
(Cahuantzi, Chen, & Güttel, 2021; Lendave, 2021; Yang, Yu, & Zhou, 2020).
While LSTMs are known for achieving greater accuracy with a sufficient
amount of training data, GRUs are the preferred choice when either not

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


3 methodology 10

enough data is available or faster model training is necessary.
Since Lee et al. (2019) have shown that LSTMs work slightly better for a
related task, the present study has chosen to use them as well. Additionally,
an MLP was chosen to investigate whether the more complex structure
of an LSTM, which utilizes a sequential version of the data, can reach a
higher performance compared to an FFNN trained on a non-sequential
version of the data. The choice of the MLP is motivated by the fact that
it is the simplest FFNN architecture thus offering a interesting baseline
performance. The comparison is thereby particularly important to find a
good trade-off between accuracy and computational efficiency, leading to a
saving of resources where appropriate.

3.2 Proposed LSTM Structure - Stateful vs. Stateless Training

By default, an LSTM can be seen as stateful as it carries the internal cell state
between the different LSTM units that process the sequential inputs one by
one. From a theoretical viewpoint, this means that a fully stateful LSTM
assumes that each step in the input sequence could have possibly been
influenced by one of the previous steps (Brownlee, 2020b). While training
an LSTM, it is common to avoid feeding it the entire input sequence at
one time, but instead split the sequence into smaller sub-sequences which
are then processed incrementally (Goodfellow et al., 2016). Processing the
data in so-called mini-batches can be used to reset the internal state of
the LSTM after each batch, preventing it’s current state from being carried
over to the next batch (Keras, n.d.-b). By doing so, each batch of data is
treated independently from the previous one, which makes it possible to
process multiple independent sequences with the same model. Especially
in areas where either not enough input data, not enough computational
power, or time is available to train one model for each individual sequence,
it is crucial to have the possibility to include all combined sequences in
one model.
Since the present work aims to construct a generic model trained on a
combination of different user sequences, it will utilize the concept of batch
processing for training an LSTM on user batches where the state of the
LSTM is reset before moving to the next user. While this approach allows
us to keep the model structure simple, several things must be considered.
First, training the model on full user batches with a varying number of
records per users will lead to a model that is potentially at risk of biasing
the predictions towards users for whom more training data is available.
To counter this risk, it was decided to train the model not on full user
sequences but on equally sized batches of user data. By further splitting the
full user sequences into smaller sub sequences, the model will be prevented



3 methodology 11

Figure 2: Illustration of the implementation of the proposed LSTM architecture
with an embeddings and dropout layer. Source: the author’s illustration based on
a figure which was created in Python by using Keras (see Appendix C)

from memorizing extremely long user sequences in total. Since the internal
memory state of the model will be reset after finishing the training on one
batch, all batches will be treated as individuals even if they originate from
the same user.
An illustration of the proposed model structure is given in Figure 1. What
cannot be seen in this illustration is that, additionally, the order of the user
batches will be shuffled before processing them with the LSTM.

3.3 Treatment of Categorical Features - Embeddings Method

After deciding on the general model structure, there are several possible
ways of treating categorical features during training. While traditional
approaches mostly rely on a one-hot encoding of features, resulting in
the disadvantage of getting a sparse representation without depicting the



4 experimental setup 12

relationship between different values of a category, the approach of entity
embeddings preserves the semantic relationships of the categories’ val-
ues while also transforming them into a lower-dimensional space (Guo &
Berkhahn, 2016).
Embeddings map each value of a categorical feature to a vector representa-
tion where the number of dimensions can be freely chosen. By doing so,
semantically more similar values are grouped together in space, whereas
dissimilar values are kept apart. Since the embeddings will be used as a
basis for training the MLP and LSTM, they can simply be added to those
models by prepending an embeddings layer to their general structure. By
using the Keras Embeddings Layer, the embeddings for each variable are
learned from the scratch as a part of training the whole model (Keras,
n.d.-a).
The embeddings size of each variable was chosen, based on the rule pro-
posed by Howard and Gugger (2020):

Embeddings size = cardinality size/2 but no bigger than 50 (1)

Figure 2 illustrates the implementation of the described LSTM architecture
with all its components.

3.4 Baselines

First, a simple majority vote will be used to compare the results to a non-
learning model. Second, a linear model, namely a ridge classifier, will be
used as an additional baseline. This model was chosen because it is well
suited for handling the high dimensionality of the input data. Last, an MLP
trained on a one-hot encoded version of the categorical data is included
to allow for insights into the effect of the implemented embeddings layer.
Those baselines will be implemented for the cold-start problem separately,
with an exception of the MLP without embeddings.

4 experimental setup

This section will give a detailed overview of the experimental setup of the
present study. Figure 3 illustrates the workflow graphically. More detailed
graphics will be presented in the different sections to give in-depth insights
into the chosen methodology.

4.1 Description of the Dataset

The selected dataset was collected as a part of a study, conducted at Tilburg
University, to investigate the relationship between phone usage, mental



4 experimental setup 13

Figure 3: Illustration of the general research workflow focused on data cleaning
and feature engineering. Source: the author’s illustration

health, and academic achievement among students. For this purpose, the
app events of volunteering students were recorded in a time period between
01-23-2020 and 06-20-2020 using a passive logging app called MobileDNA.
In addition, the participants were asked to fill in mood surveys (see Aalbers,
Keijsers, Abeele, and Hendrickson (2020) for a detailed description of the
study design and data collection). For the purpose of the present work,
only data related to phone usage and demographics will be used.
Before cleaning, the data sets consist of a total of 5,824,291 app logs from
272 participants. Each app-log includes a unique user ID, an identifier
of the used application, the start and the end time of the use, the battery
level of the phone, the location, and whether the use was initiated by
a notification. The demographics include the age and the sex of each
participant.
Following the approach used by Tian et al. (2021) for constructing the
target variable, information about the app categories is needed (see section
4.5 for details). Since those were not included in the original dataset, an
additional dataset containing information regarding each app’s assigned
category in the Google Playstore was retrieved from Kaggle (Prakash, 2021).
To provide some insight into the properties of the datasets, Appendix D
shows some interesting results from the EDA.

4.2 Data Cleaning

First, all datasets were deduplicated and a search for illegal values was
conducted. One illegal age value was detected and removed for a later
imputation. One app event with a negative use duration was dropped.



4 experimental setup 14

Figure 4: Histogram depicting the distribution of the number of app events per
user after data cleaning. Source: the author’s illustration

From a statistical viewpoint, there are several outliers in the feature use
duration. As already discussed, one main challenge for predicting the
dwell time is the underlying, highly right-skewed distribution. Since the
prediction task will be addressed by making it a multiclass classification
problem, and the target construction is not highly affected by the outliers,
they will be kept as they are.
Users with less than 5,000 app events were dropped to ensure that the
planned user-based train-validation-test split (see section 4.6 for details)
leads to subsets large enough to provide meaningful results. Due to that
restriction, the initial number of users was reduced to 186 with a total of
4,419,918 app records, whereas the number of records per person varies
between 5,013 and 88,895. Figure 4 shows a histogram of the distribution
of the number of app events per user. After the initial cleaning, all datasets
were merged together to treat missing data.

4.3 Missing Data Treatment

Besides the dropped illegal age value, only latitude and longitude contain
1,114,792 missing values. It has been shown from previous studies that
the location of the users contains valuable information about their phone



4 experimental setup 15

Figure 5: Full list of features, including categorization, description, and type of
feature where constructed ones are highlighted in light pink. Source: the author’s
illustration

usage behavior (Xu et al., 2020). Thus it was decided to adapt a multiple
imputation strategy to avoid losing useful information.

4.4 Feature Engineering and Transformation

Based on the already existing features, several new ones were constructed.
Following the domain literature (Tian et al., 2021), features were categorized
into user-related, contextual, phone history related, and oracle features
which already provide information about the app events for which the
engagement class has to be predicted. A detailed overview of all features
and their categorization can be found in Figure 5.

4.4.1 User-Related Features

The age variable was used to create four age categories, based on the
quantiles.

4.4.2 Contextual Features

Based on the start time of each app-event, two time-related features were
constructed: the weekday and the hour of a day. To utilize location
as a feature, latitude and longitude were transformed into geohashes.
Geohashes are unique identifiers that encode latitude and longitude values
into short strings representing a specific region of the world (Hill, 2017).



4 experimental setup 16

The number of characters of the geohash is dependent upon the size of
all individual regions, wherein longer hashes lead to smaller regions. As
a trade-off between precision and the number of distinct categories, the
length was set to five. Additionally, a k-means algorithm was used to
cluster the dataset based on the latitude and longitude values into eight
groups.

4.4.3 App-History Related Features

Based on the time between app events, usage sessions were constructed.
Following Tian et al. (2021), a session consists of app events with no
more than five minutes in-between. The duration of an ongoing session,
at the moment of starting an app event, was calculated and added as a
feature. Additionally, the duration between an app-event and the previous
app-event was calculated and added as feature.

4.4.4 Oracle Features

Two oracle features were added to the dataset. First, the category of the
app at the next timestep, and second, the duration until the app at the next
timestep is opened were added to each app record.

4.4.5 Feature Transformation

All numerical features were standardized by using the StandardScaler from
sklearn to improve the performance of all neural networks (Anysz, Zbiciak,
& Ibadov, 2016; Shanker, Hu, & Hung, 1996). For the Ridge Classifier and
the simple MLP baseline, categorical features were one-hot encoded. For
all other models they were treated by an embeddings layer.

4.5 Construction of Target

The prediction task will be handled as a multiclass classification prob-
lem with three output classes, short, medium, and long. Following the
approach of Tian et al. (2021), the engagement level of an app will not
be solely based on its use duration, but constructed with regard to the
corresponding app category and its 33% and 67% quantiles for use dura-
tion. This transformation solves the problem of a highly skewed numerical
outcome variable, which is often encountered during dwell time prediction
tasks and can be seen in Figure 6. Additionally, it results in a balanced
target.



4 experimental setup 17

Figure 6: Kernel density estimation plot of the usage duration in minutes. Source:
the author’s illustration obtained using Python

4.6 Training-Validation-Testing Split

The full dataset was split into three subsets. Since the LSTM will utilize the
sequential character of the underlying data, a random split of the records
is not appropriate. Instead, the app records of each individual user were
split in such a way that approximately the first 80% of the records were
used for training, the next 10% for validation, and the last 10% for testing.
Thus, each subset contains records of the same users, only in a different
time periods. To ensure comparability between models, the same method
of splitting was adapted for the MLPs and baselines.
To test the model’s performance for the cold-start problem, a different split
was chosen, where 80% of the users with their full records are randomly
chosen to be in the training set, 10% in the validation set, and 10% in the
testing set, resulting in subsets without any user intersection. For a better
understanding, Figure 7 provides an illustration of the pre-processing for
all different models and tasks.

4.7 Data Pre-processing for LSTM and MLP

Since the two models will treat the task differently, they need a separate
pre-processing and modeling of the data structure used for model training.
As already explained, the MLP only takes into account the features of



4 experimental setup 18

Figure 7: Workflow focused on the training-validation-testing split and pre-
processing for all baselines, the MLP, and the LSTM on the main task and the
cold-start problem. Source: the author’s illustration

one app record to predict the dwell time for the following app event.
Accordingly, the features at timestep t − 1 are utilized for predicting the
target of the timestep t.
Instead, the LSTM will use a sequences of previous app records to predict
the following one. To transform the structure in a way which allows for
that, a sliding window method was used (Brownlee, 2020a). The number
of previous app records that are taken into account for predicting the next
apps dwell time is defined as hyperparameter and will be referred to as
the lookback range. Current literature flags it as one of the most important
hyperparameters for similar prediction tasks (Katsarou et al., 2022; Xu et
al., 2020). Figure 8 gives an illustration of the different data structures.

4.8 Hyperparameter Tuning

All neural networks will be optimized using an out-of-sample evaluation
method, where the models will first be trained on the training set. Next,
the hyperparameter settings will be chosen on the validation set. Last, the
predictive accuracy will be obtained from the test set.
The most important hyperparameter for the proposed LSTM is the batch
size. While a larger batch size would allow for a more specific pattern



4 experimental setup 19

Figure 8: Exemplary illustration of the differences in the data structure used for
training the MLP (left) and the LSTM (right). Source: the author’s illustration

recognition in each individual user sequence, a smaller batch size is ex-
pected to lead to greater generalizability. At the same time, the batch size
is dependent on the shortest available record. After splitting the dataset,
the shortest user sequence in the test set has a length of 501. Therefore, it
was decided to choose 256 as maximum batch size to test.
To allow a training of the LSTM on sequential user batches, each user
subset must be dividable by the chosen batch size. Accordingly, all users’
app-records are truncated to a number dividable by 256 to allow for testing
batch sizes of 64, 128, and 256 as hyperparameters. This procedure was
chosen to avoid the need for additional computational power and memory
space resulting from zero padding. Since only about 0.5% of the dataset
was lost, no negative effects are expected.
By implementing a manual optimization loop, first the batch size, in com-
bination with the number of neurons that decide upon the complexity of a
model, is optimized for both the MLP and the LSTM. Therefore, all possible
combinations of the values 64, 128, and 256 will be tested. Since Greff,
Srivastava, Koutník, Steunebrink, and Schmidhuber (2017) have shown that
it is reasonable to tune the hyperparameters of an LSTM independently, the
lookback range of the LSTM, the second most important hyperparameter,
will only be tuned afterwards by testing the values 5, 10, and 20.
To find the best number of training epochs, and prevent the models from
overfitting, an early stopping mechanism with a patience value of 5 is
used during optimization. After stopping, the best model weights will be
restored.



4 experimental setup 20

For both models an ADAM algorithm is used for gradient-based optimiza-
tion and categorical cross-entropy is used as the loss function. For the
hidden layer, sigmoid, and for the output layer, softmax, are used as the
activation functions. To prevent the models from overfitting, a dropout
layer is added with a dropout rate of 0.2. Those choices were all based on
relevant, previously conducted research (Katsarou et al., 2022; Xu et al.,
2020).

4.9 Robustness Check

The robustness of the MLP and LSTM is checked by resampling the data
used for training in-between three independent training periods. Since a
complete resampling of the data is not possible, because of the sequential
structure of the data, the order in which the records are fed into the models
is randomized and resampled. In the case of the LSTM, this takes place
on the level of the user batches; in case of the MLP, on the level of the
individual records.

4.10 Evaluation Metrics

Following the already existing literature in the context of smartphone
engagement (Tian et al., 2021), the chosen evaluation metric is accuracy.
Since the target was modeled in a way resulting in balanced output classes,
it seems appropriate for evaluation.

4.11 Software

All steps were completed using the programming language Python 3.0 in
a Juypter Notebook. The following packages were used:

• Pandas 1.0.5 (McKinney, 2010)

• NumPy 1.22.3 (Harris et al., 2020)

• Fancyimpute 0.7.0 (Rubinsteyn & Feldman, 2016)

• Sklearn 1.0.2 (Pedregosa et al., 2011)

• Pygeohash 1.2.0 (McGinnis, 2015)

• Seaborn 0.11.2 (Waskom, 2021) and Matplotlib 3.5.1 (Hunter, 2007)

• Keras 2.8.0 (Chollet et al., 2015) with TensorFlow 2.8.0 (Abadi et al.,
2015) as backend



5 results 21

Figure 9: Accuracy plot of the training phase of the MLP on the full feature subset
by the use of the best hyperparameters showing training and validation accuracy
in comparison. Source: the author’s illustration obtained using Python

5 results

The following section will present the results for all baseline models, the
MLP, and the proposed LSTM. To begin, the hyperparameter optimization
for all models is unfolded. After that, and by following the structure of the
research questions, first, the performance of the LSTM and the MLP on the
full feature subset will be compared to the baselines, along with the results
of the robustness check and error analysis. Second, the results of training
the MLP and LSTM on different feature subsets will be shown. Last, the
performance of the LSTM on the cold-start problem will be evaluated.

5.1 Hyperparameter Tuning of the Neural Networks

To begin, Figure 9 illustrates the early-stopping procedure used to deter-
mine the best number of epochs by showing one exemplary accuracy plot
that was obtained while training the MLP on the full feature subset. By
looking at this figure, it can be seen that the optimal validation accuracy
for this model could be obtained at epoch 12.
Table 1 shows an overview of the best hyperparameters for the MLP
and the LSTM on all different feature subsets. Table 2 shows the best
hyperparameters for the MLP without embeddings, and the models for the
cold-start problem. Appendix E includes all of the scores that were used to



5 results 22

Hyperparameters

MLP with Emd. LSTM

full subset
B: 256

N: 256

B: 256

N: 256

L: 20

full subset incl. oracle
B: 256

N: 256

B: 256

N: 256

L: 20

contextual + history
B: 256

N: 128

B: 256

N: 128

L: 20

only history
B: 256

N: 256

B: 128

N: 256

L: 20

Table 1: Best hyperparameters for the MLPs with Embeddings and the LSTMs on
different feature subsets where B denotes the batch size, N the number of neurons,
and L the lookback range

Hyperparameters
MLP no Emd. MLP cold-start LSTM cold-start

full subset
B: 128

N: 128

B: 64

N: 256

B: 64

N: 256

L: 20

Table 2: Best hyperparameters for the MLP without embeddings and the models
for the cold-start problem on the full feature subset, where B denotes the batch
size, N the number of neurons, and L the lookback range

produce both tables. Most models worked best with a higher number of
neurons, indicating that more complex structures can better capture the
patterns of the underlying data. For most of the models, a greater batch
size worked best, with the exception of all the models which were used
to address the cold-start problem. For those models, the smallest batch
size generally worked best, which supports the assumption that smaller
batch sizes are advantageous for a better generalization while larger batch
sizes lead to a closer fit to the data. Additionally, it has been found that the
performance of the LSTM constantly increased by increasing the lookback
range. Since the memory of the machine used for this study was limited to
256GB, we could not test whether any further increase would continue this
trend.



5 results 23

Accuracy

train valid test

Majority Vote 0.3410 0.3340 0.3376

Ridge Classifier 0.3723 0.3730 0.3700

MLP no Emd. 0.3934 0.3897 0.3851

MLP with Emd. 0.4195 0.4120 0.4061

LSTM 0.4389 0.4296 0.4262

Table 3: Results of all baseline models, the MLP, and the LSTM trained on the
full feature subset with the best hyperparameters on the training, validation, and
testing sets

5.2 Performance of the Baselines, the MLP, and the LSTM on the full feature
subset

To begin, Table 3 gives an overview of the performance of all baselines,
the MLP, and the LSTM on the full feature subset. While the majority vote
resulted in an accuracy of 0.338, the Ridge Classifier obtained a slightly
better result, increasing the accuracy to 0.37.
All proposed neural networks outperformed the linear baselines. The
results of the MLP with embeddings layer and the LSTM were obtained
after averaging the results over three training periods. By comparing the
performance of both models during the different training phases, it can
be seen that they reached a relatively stable performance across the re-
sampled training sets which is an indication of the model’s robustness. A
detailed overview of the results from the robustness check can be found in
Appendix F.
The LSTM has a tendency to overfit the training data, while the MLP is less
at risk of overfitting, which result can be seen by looking at the accuracy
plots obtained during training (see Appendix G), as well as the accuracy
differences on the training and validation set.
While the MLP, trained on a dummy-encoded version of the dataset,
reached an accuracy of 0.385, the MLP which utilized entity embeddings
could further improve the performance by 0.021 to 0.406. The LSTM out-
performed the simple MLP by 0.02, reaching an accuracy of 0.426, thus
being the best performing model.

5.3 Error Analysis

To begin, Figure 10 shows a comparison of the multiclass confusion matri-
ces derived from the LSTM’s and MLP’s predictions on the test data using



5 results 24

Figure 10: Multiclass confusion matrices of the MLP (left) and the LSTM (right)
obtained from the predictions on the test set by the models trained on the full
feature subset using the best hyperparameters. Source: the author’s illustration
obtained using Python

the full feature subset. Based on that, it can be seen that both models work
best for predicting long-duration app usage. While the LSTM performed
worst for the medium class, the MLP is slightly better, reaching the same
accuracy for the medium and short class. The LSTM performed slightly
better on the short-duration class than the MLP. The performance differ-
ences between both models can thus be entirely explained by the LSTM’s
better performance on the long-duration class. In general both models
have a bias towards predicting the long-duration class.
To check for a bias between users with a varying amount of available train-
ing data, the LSTM’s predictive performance for all users was compared.
Figure 11 gives an illustration of the results. The length of a user’s training
data can be found on the x-axis, while the y-axis shows the accuracy. The
purple line was obtained by a linear regression, the pink line was obtained
by using a robust regression technique, namely Huber regression, and thus
accounts for outliers. As can be derived from the plot, the model has a
small bias towards those users for whom more training data is available.
To quantify it, the coefficient of the Huber regression line is 2.66e−07.

5.4 Performance of the MLP and the LSTM on different Feature Subsets

Both the MLP and the LSTM were tested on different feature subsets. Table
4 shows an overview of the results obtained. As can be seen, the inclusion of
the created oracle feature increased the performance of the MLP, compared
to the standard feature subset, by 0.035, leading to an accuracy of 0.442.
The same applies to the LSTM, for which the inclusion of oracle features
improved the performance by 0.035, leading to an accuracy of 0.461.



5 results 25

Figure 11: Scatter plot depicting the accuracy of each user on the testing set
obtained by the LSTM trained on the full feature subset dependent on the cor-
responding number of available records in the training data, including a linear
regression line (purple) and a Huber regression line (pink). Source: the author’s
illustration obtained using Python

In contrast, removing user-related and contextual features led to a decrease
of the performance for both models. While removing the user-related
features only led to a small decrease in performance, 0.006 for the MLP
and 0.001 for the LSTM, the loss of contextual features had a bigger impact
on the models’ performances. The MLP’s performance decreases massively
by 0.037 from 0.406 to 0.369, whereas the LSTM only lost 0.006, going from
an accuracy of 0.426 to 0.420. By comparing the performance of the MLP
and the LSTM on all different feature subsets, it is remarkable that the
MLP’s performance drops more rapidly when removing user-related and
contextual features while the LSTM is able to keep the performance more
constant.
A comparison of the computing times clearly shows that all MLPs have
a shorter training time than the LSTMs, where the training times are
dependent on the underlying feature subsets, the batch size, and the
number of neurons. Therefore, the LSTM that was trained on contextual
and history-related features with a batch size of 256 and 128 neurons had a
faster training time than the LSTM trained on only the history, with batch
size of 128 and 256 neurons.



5 results 26

Accuracy Training time

MLP LSTM MLP LSTM

Full subset incl. oracle 0.4415 0.4613 0:23:11 12:26:37

Contextual and history 0.4005 0.4249 0:17:21 03:42:02
Only history 0.3694 0.4201 0:09:20 17:06:10

Full subset 0.4061 0.4262 0:20:49 10:33:27

Table 4: Results of the MLP and the LSTM, trained on different feature subsets,
using the best hyperparameters, including the training time

5.5 Performance of the LSTM on the Cold-Start Problem

As can be seen from Table 5, the MLP’s performance on the cold-start
problem only improves by 0.003 upon the majority vote, reaching a score
of 0.356, whereas it is worse when compared to the performance of the
ridge classifier which got an accuracy of 0.365. The LSTM is the best
performing model on the cold-start problem and reaches an accuracy of
0.409, thus improving by 0.053 compared to the MLP. Remarkable to see
are the differences between the training, validation, and testing sets of the
deep learning models. While the MLP loses a total of 0.063, the LSTM loses
0.02 of accuracy between the training and the testing set.
This can mainly be explained by the fact that the models have to gener-
alize to previously unseen users, where the LSTM is more successful in
addressing this problem than the MLP. This assumption is strengthened
when examining the accuracy plots obtained during training of the models.
While we would normally expect the validation accuracy to increase along
the epochs until a point of saturation is reached, the Figures in Appendix
H show a different observation.

Accuracy

train valid test

Majority Vote 0.3411 0.3642 0.3530

Ridge Classifier 0.3724 0.3723 0.3652

MLP with Emd. 0.4195 0.3754 0.3561

LSTM 0.4290 0.4061 0.4091

Table 5: Results of the different models, trained on the full feature subset, using
the best hyperparameters for training, validation, and testing data on the cold-start
problem



6 discussion 27

While the accuracy on the training set constantly increases for both models,
the validation accuracy stops increasing after the first epochs and drops
rapidly afterwards. This pattern can be explained by taking into considera-
tion the data split: Since the data sets were constructed without any user
intersection, obtaining a closer fit to the training data, and accordingly to
the app usage behavior of the users included in the training data, leads to a
loss in the capability of generalizing to the usage patterns of the previously
unseen users included in the validation data. This is also in accordance
with the observation that a smaller batch size worked better for the models
trained for cold-start problem.

6 discussion

The main goal of the present research was to investigate to what extent a
user-independent deep-learning approach can be used to solve the mul-
ticlass classification problem of dwell time prediction for mobile phone
applications. To give an in-depth answer to the main research question,
the results obtained will be analysed from three different perspectives: the
performance of the models and their components, the trade-off between
accuracy, user-privacy, and computational efficiency, and the capabilities of
generalization. Each perspective will be set in the context of the already
existing research. Additionally, limitations will be shown and recommen-
dations for future research will be discussed.

6.1 Predictive Performance of the MLP and LSTM compared to the Baselines

When looking at Table 3, it can be seen that even the simplest MLP out-
performed the linear baselines. It is notable that making the MLP more
complex by choosing an embeddings method for encoding categorical
features can increase the performance by 0.021. This emphasizes the im-
portance of capturing the relationships between categorical features as it
remarkably improves the performance of the MLP which stayed unaltered
in all other aspects.
Switching from an MLP to the proposed LSTM, which allows for not only
taking into account the last opened app of a user but the dependencies be-
tween all previously seen app events in the current batch, further increased
the performance by 0.02. Additionally, each increase in the lookback range
of the LSTM further increased the performance. This supports the assump-
tion of Lee et al. (2019) that treating prediction problems related to app
usage as sequential problems is not only suitable but also advantageous in
terms of increasing the predictive accuracy.
Comparing the LSTM’s performance to the current state of the art as is



6 discussion 28

provided by Tian et al. (2021), who reached an accuracy of 0.485, reveals
that the present work could not improve upon their performance for two
reasons. First, since they treated the problem as joint-prediction task, they
already had access to the following app’s category which was then utilized
for the dwell time prediction. Including so-called oracle features in the fea-
ture subset used for training the proposed LSTM increased its performance
to 0.461, but it still lagged behind that of Tian et al. (2021), which is where
the second reason comes into play. Since Tian et al. (2021) aggregated the
dwell time of the applications on a session-based level before creating the
target variable, they, in general, dealt with more pronounced differences in
their target variable. Working on an application-based level instead means
dealing with hardly recognizable differences in dwell time, thus making
the prediction task more challenging.

6.2 Discussion of the Model Performance on different Feature Subsets and the
Trade-Off between User-Privacy, Computational Efficiency, and Accuracy

By training both models on different feature subsets, two remarkable
differences could be recognised: First, it is clear to see that the MLP is, as
expected, the better choice in terms of computational efficiency. This can
be explained by the greater model complexity of the LSTM, but also by the
greater complexity of the underlying sequential training data.
In contrast, the LSTM is more suited for keeping the accuracy on a reduced-
feature subset high. While the LSTM only loses 0.006 of its accuracy
between the full feature subset and the one which only includes the phone
history, the MLP loses a total of 0.037. This is most likely based on the
fact that the LSTM can leverage the power of the sequential information
when features are removed, while the MLP loses information crucial for
the predictive accuracy and has no way to recover from this loss. This
observation supports the findings of Katsarou et al. (2022) who showed that
an LSTM trained on only the phone-history of a user can perform as well
as a model which includes additional features on a next-app prediction
task, but is also in accordance with the works of Tian et al. (2021) and
Mathur et al. (2016) who showed that contextual and user-related features
are well suited for predicting dwell time.
The best predictive accuracy could be reached by the models trained
on the full-feature subset including oracle features, whereby the LSTM
still yields better results than the MLP. Since including oracle features
improved the performance by 0.035 for the LSTM and the MLP, the results
give an incentive for treating the task of dwell time prediction as a joint
prediction task, as Tian et al. (2021) already did in their work. Figure
12 illustrates what these results indicate for the trade-off between user



6 discussion 29

Figure 12: Different deep learning architectures, placed on a magical triangle,
illustrating the trade-off between privacy, accuracy, and computational efficiency
by taking into account the results obtained. Source: the author’s illustration

privacy, computational efficiency, and accuracy. While the MLP offers the
best trade-off in terms of computational efficiency and accuracy, the LSTM
offers the best between accuracy and privacy. None of the tested models
and different feature subsets could offer a good trade-off between all three
aspects since the LSTM’s computing time is still high on a reduced feature
subset, while the MLP’s accuracy on the reduced feature subset is not
convincing.
One option worth investigating in future research is the use of a GRU
model that can offer a trade-off between accuracy and computational
efficiency. While it can leverage the power of the sequential structure in a
similar way to the LSTM it is, at the same time, less demanding in terms
of computational power.

6.3 Capabilities of Generalization

The generalizability of the proposed LSTM can be evaluated from two
perspectives: generalization to users with less available training data and
generalization to previously unseen users.
As could be seen from the error analysis, the proposed LSTM cannot pre-
vent a small bias towards users for whom more training data is available
from appearing. Despite that, the proposed model offers an opportunity
for including multiple independent sequences into a simple architecture by,
at the same time, reaching a relatively stable performance between users.



6 discussion 30

Additionally, the models’ generalization to previously unseen users, which
was investigated by looking at the cold-start problem, led to interesting
results. The cold-start version of the LSTM reached an accuracy of 0.409.
As expected, the batch size of the LSTM, which was chosen as a hyper-
parameter, plays an important role for finding a trade-off between the
generalization and a closer fit which is particularly important for address-
ing the cold-start problem.
Since the validation accuracy for both deep learning models stopped in-
creasing after one epoch, a main advantage of deep-learning models, the
learning process aiming for capturing complex patterns in the underlying
data, could not be fully leveraged in the cold-start prediction task. As
a result, a simple linear baseline was able to outperform the MLP. What
could not be answered with that observation is whether a more complex
deep-learning structure would be able to counter this problem, or if a sim-
pler model is indeed advantageous for that particular task. Based on that,
future research should definitely take a closer look at the comparison of
simple models and more complex deep-learning models on the cold-start
problem.
One alternative worth investigating for both generalization tasks could be
the use of a transfer-learning approach, which would work on costs of the
current models’ simplicity.

6.4 Limitations and Further Recommendations

Besides the already discussed shortcomings, the proposed research has
two main limitations. First, the homogeneity of the dataset used prob-
ably produced misleading results. Since the phone usage of members
of a homogeneous group is expected to be more similar, compared to a
heterogeneous group, all findings related to generalizations between users
have to be treated cautiously and must be confirmed on a set of diverse
users. The same applies to the observed effect of user-related features on
the predictive accuracy of the models.
Second, the limited computational resources did not allow for extensive
hyperparameter tuning related to the number of neurons and the lookback
range of the LSTM. Furthermore, only a one-layer LSTM could be tested.
Accordingly, future research should investigate the influence of a more
complex model structure, or different sets of hyperparameters.

6.5 Contributions and Societal Impact

The present research made a novel contribution to the field of dwell time
prediction for mobile phones by being the first that adapted a deep-learning



7 conclusion 31

approach to leverage the power of the sequential structure of app usage
data. By doing so, a generic modeling approach, which is not only capable
of including various independent sequences but can also be used to attack
the cold-start problem, was introduced. While, from a business perspective
in particular, the possibility to increase users’ satisfaction by deploying the
model to a real-world application is valuable, the societal relevance of the
present project can not only be found in the discussion of highly relevant
privacy questions but also in investigating how different sequences can
be included into one predictive model. Being able to utilize the power
of various independent sequences for prediction is not limited to the
domain of app usage but also provides several possibilities for real-world
applications in other fields. The most prominent example is the increasing
amount of recorded sensor data in industry, health, and also on a personal
level. The present research thus provides a first framework which can be
utilized as a starting point for addressing prediction tasks related to similar
data structures.

7 conclusion

To conclude, the main research question can be answered by looking at the
answers for the proposed sub-questions:

RQ1 To what extent will the use of an LSTM architecture improve the accuracy
for dwell time predictions on an application-based level compared to a feed-
forward neural network, namely MLP, both trained user-independently?

The answer to the first research question could be found by testing both an
MLP and an LSTM for the task of dwell time predictions. Table 3 shows
that the LSTM was able to improve upon the MLPs performance by 0.02,
which can be explained by its ability to leverage sequential dependencies
for the prediction task.

RQ2 To what extent will the proposed user-independent LSTM structure bias the
results towards users for whom more training data is available?

The proposed LSTM showed a small bias towards users for whom more
training data was available, which can be seen in Figure 11.

RQ3 Which feature subset can reach the best predictive performance for the task of
dwell time prediction for both MLP and LSTM, respectively, is it possible to
minimize user-related and contextual features to prevent privacy concerns
while keeping the accuracy of the proposed models high, and what differences
can be seen between both models using different feature subsets?



8 data source/code/ethics statement 32

While the LSTM was able to reach a more stable performance when re-
ducing the utilized features, the performance of the MLP dropped rapidly,
which can be seen in Table 4. Thus, it can be concluded that an LSTM
is more suited for reaching a good trade-off between users’ privacy and
accuracy.

RQ4 To what extent can the proposed LSTM structure solve the cold-start prob-
lem?

By looking at Table 5, it can be seen that the LSTM reached a performance
of 0.409 on the cold-start problem, performing better than all baselines and
the MLP. Accordingly, the proposed LSTM can be used to generalize to
previously unseen users although there might be room for improvement by
using more complex model structures or approaches like transfer-learning.

8 data source/code/ethics statement

Work on this thesis did not involve collecting data from human participants
or animals. The main dataset that was used for this project was provided
by my thesis supervisor who remains the original owner of the data during
and after completion of this thesis. I fully acknowledge that I do not have
any legal claim to this data. The dataset used is not publicly available.
An additional dataset was obtained from Kaggle, and is available under
the linked repository:
https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps.
The code of this thesis was inspired by various online sources, most im-
portantly by the code published by Jason Brownlee on Machine Learning
Mastery (https://machinelearningmastery.com/) and John Wittenauer,
published on Medium (https://medium.com/@jdwittenauer).
All figures that are depicted were created by the author of this thesis.
When they were inspired by other works, this is explicitly mentioned.
The code of this thesis is partly available in the following repository:
https://github.com/KatharinaPritzl/MasterThesis

https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps
https://machinelearningmastery.com/
https://medium.com/@jdwittenauer
https://github.com/KatharinaPritzl/MasterThesis


REFERENCES 33

references

Aalbers, G., Keijsers, L., Abeele, M. V., & Hendrickson, A. T. (2020). Prereg-
istration of data collection. Retrieved from https://osf.io/6fs92/

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . .
Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Retrieved from https://www.tensorflow.org/

Anysz, H., Zbiciak, A., & Ibadov, N. (2016). The influence of input data
standardization method on prediction accuracy of artificial neural
networks. Procedia Engineering, 153, 66–70.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., . . . others (2020). Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information fusion, 58, 82–115.

Brownlee, J. (2020a). Time Series forecasting as supervised learning.
Retrieved from https://machinelearningmastery.com/time-series

-forecasting-supervised-learning/

Brownlee, J. (2020b). Understanding stateful LSTM recur-
rent neural networks in python with keras. Retrieved from
https://machinelearningmastery.com/understanding-stateful

-lstm-recurrent-neural-networks-python-keras/

Cahuantzi, R., Chen, X., & Güttel, S. (2021). A comparison of LSTM and
GRU networks for learning symbolic sequences. CoRR, abs/2107.02248.
Retrieved from https://arxiv.org/abs/2107.02248

Cao, H., & Lin, M. (2017). Mining smartphone data for app usage prediction
and recommendations: A survey. Pervasive and Mobile Computing, 37,
1–22.

Chen, C., Maekawa, T., Amagata, D., & Hara, T. (2021). Predicting Next-
use Mobile Apps Using App Semantic Representations. Journal of
Information Processing, 29, 597–609.

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On
the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. CoRR, abs/1409.1259. Retrieved from http://arxiv.org/

abs/1409.1259

Chollet, F., et al. (2015). Keras. https://keras.io.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Graves, A. (2013). Generating Sequences with Recurrent Neural Networks.

CoRR, abs/1308.0850. Retrieved from http://arxiv.org/abs/1308

.0850

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber,
J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on
Neural Networks and Learning Systems, 28(10), 2222-2232. doi: 10.1109/

https://osf.io/6fs92/
https://www.tensorflow.org/
https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://arxiv.org/abs/2107.02248
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://keras.io
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850


REFERENCES 34

TNNLS.2016.2582924

Guo, C., & Berkhahn, F. (2016). Entity Embeddings of Categorical Variables.
CoRR, abs/1604.06737. Retrieved from http://arxiv.org/abs/1604

.06737

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., . . . Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825), 357–362. Retrieved from https://doi

.org/10.1038/s41586-020-2649-2 doi: 10.1038/s41586-020-2649-2
Hill, W. (2017). Geohashing. What is geohashing exactly? Medium. Retrieved

from https://medium.com/@bkawk/geohashing-20b282fc9655

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Howard, J., & Gugger, S. (2020). Deep Learning for Coders with Fastai and
Pytorch: AI Applications without a PhD. O’Reilly Media, Incorporated.
Retrieved from https://books.google.no/books?id=xd6LxgEACAAJ

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in
science & engineering, 9(03), 90–95.

Katsarou, K., Yu, G., & Beierle, F. (2022). Whatsnextapp: LSTM-based
Next-App Prediction with App Usage Sequences. IEEE Access, 10.
doi: 10.1109/ACCESS.2022.3150874

Keras. (n.d.-a). Keras Documentation: Embedding layer. Retrieved
from https://keras.io/api/layers/core_layers/embedding/

#embedding-class

Keras. (n.d.-b). Keras Documentation: LSTM Layer. Retrieved from https://

keras.io/api/layers/recurrent_layers/lstm/

Lalmas, M., O’Brien, H., & Yom-Tov, E. (2014). Measuring user engagement.
Synthesis lectures on information concepts, retrieval, and services, 6(4), 1–
132.

Lee, Y., Cho, S., & Choi, J. (2019). App usage prediction for dual dis-
play device via two-phase sequence modeling. Pervasive and Mobile
Computing, 58.

Lendave, V. (2021). LSTM Vs GRU in Recurrent Neural Network: A Compar-
ative Study. Retrieved from https://analyticsindiamag.com/lstm

-vs-gru-in-recurrent-neural-network-a-comparative-study/

Mathur, A., Lane, N. D., & Kawsar, F. (2016). Engagement-aware computing:
Modelling user engagement from mobile contexts. In Proceedings of
the 2016 acm international joint conference on pervasive and ubiquitous
computing (pp. 622–633).

McGinnis, W. (2015). Pygeohash. https://pypi.org/project/pygeohash/ .
McKinney, W. (2010). Data Structures for Statistical Computing in Python.

In Stéfan van der Walt & Jarrod Millman (Eds.), Proceedings of the
9th Python in Science Conference (p. 56 - 61). doi: 10.25080/Majora

http://arxiv.org/abs/1604.06737
http://arxiv.org/abs/1604.06737
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://medium.com/@bkawk/geohashing-20b282fc9655
https://books.google.no/books?id=xd6LxgEACAAJ
https://keras.io/api/layers/core_layers/embedding/#embedding-class
https://keras.io/api/layers/core_layers/embedding/#embedding-class
https://keras.io/api/layers/recurrent_layers/lstm/
https://keras.io/api/layers/recurrent_layers/lstm/
https://analyticsindiamag.com/lstm-vs-gru-in-recurrent-neural-network-a-comparative-study/
https://analyticsindiamag.com/lstm-vs-gru-in-recurrent-neural-network-a-comparative-study/


REFERENCES 35

-92bf1922-00a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., . . . Duchesnay, E. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Prakash, G. (2021). Google play store apps. Retrieved from https://www

.kaggle.com/datasets/gauthamp10/google-playstore-apps

Rubinsteyn, A., & Feldman, S. (2016). Fancyimpute. An Imputation Library
for Python. URL https://github. com/iskandr/fancyimpute.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. nature, 323(6088), 533–536.

Shanker, M., Hu, M. Y., & Hung, M. S. (1996). Effect of data standardization
on neural network training. Omega, 24(4), 385–397.

Shin, C., Hong, J.-H., & Dey, A. K. (2012). Understanding and prediction
of mobile application usage for smart phones. In proceedings of the
2012 acm conference on ubiquitous computing (pp. 173–182).

Tian, Y., Zhou, K., & Pelleg, D. (2021). What and How Long: Prediction
of Mobile App Engagement. ACM Trans. Inf. Syst., 40(1). Retrieved
from https://doi.org/10.1145/3464301 doi: 10.1145/3464301

Vasiloudis, T., Vahabi, H., Kravitz, R., & Rashkov, V. (2017). Predicting ses-
sion length in media streaming. In Proceedings of the 40th international
acm sigir conference on research and development in information retrieval
(pp. 977–980).

Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of
Open Source Software, 6(60), 3021.

Wu, S., Rizoiu, M.-A., & Xie, L. (2018). Beyond views: Measuring and
predicting engagement in online videos. In Twelfth international aaai
conference on web and social media.

Xu, S., Li, W., Zhang, X., Gao, S., Zhan, T., & Lu, S. (2020). Predicting and
recommending the next smartphone apps based on recurrent neural
network. CCF Transactions on Pervasive Computing and Interaction, 2(4),
314–328.

Yang, S., Yu, X., & Zhou, Y. (2020). LSTM and GRU Neural Network
Performance Comparison Study: Taking Yelp Review Dataset as an
Example. In 2020 international workshop on electronic communication and
artificial intelligence (iwecai) (p. 98-101). doi: 10.1109/IWECAI50956

.2020.00027

Zou, X., Zhang, W., Li, S., & Pan, G. (2013). Prophet: What app you wish
to use next. In Proceedings of the 2013 acm conference on pervasive and
ubiquitous computing adjunct publication (pp. 167–170).

https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps
https://www.kaggle.com/datasets/gauthamp10/google-playstore-apps
https://doi.org/10.1145/3464301


A appendix a 36

a appendix a

Abbreviation Meaning

FFNN Feedforward neural network
MLP Multilayer perceptron
LSTM Long short-term memory
GRU Gated recurrent unit
RNN Recurrent neural network
B Batch size
N Number of neurons
L Lookback range
Emd Embeddings layer
EDA Exploratory data analysis

Table 6: Abbreviations which are used throughout the present work and their
explanation

b appendix b

Mathematical formulation of an LSTM based on Christopher Olah (2015),
where W refers to the different weight matrices, and b to the biases:

ft = σ(W f · [ht−1, xt] + b f ) (2)

it = σ(Wi · [ht−1, xt] + bi) (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct = ft · Ch−1 + it · C̃t (5)

ot = σ(Wi · [ht−1, xt] + bo) (6)

ht = σ · tanh(Ct) (7)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


C appendix c 37

c appendix c

Figure 13: Illustration of the implementation of the proposed LSTM architecture
with an embeddings and dropout layer depicted with only three categorical
features. Source: the author’s illustration obtained in Python by using Keras



D appendix d 38

d appendix d

Figure 14: Boxplots of the use duration in minutes per app category. Source: the
author’s illustration obtained using Python inspired by Tian et al. (2021)

Figure 15: Average app use duration per hour of the day. Source: the author’s
illustration obtained using Python inspired by Tian et al. (2021)



E appendix e 39

e appendix e

MLP without Embeddings

full feature subset
Number of Neurons

Batch Size 64 128 256

64 0.3883 0.3885 0.3891

128 0.3895 0.3897 0.3889

256 0.3890 0.3892 0.3894

Table 7: Scores of the full hyperparameter tuning of the MLP without Embeddings
on the full feature subset derived from the validation set

MLP with Embeddings

full feature subset incl. oracle ones full feature subset
Number of Neurons Number of Neurons

Batch Size 64 128 256 Batch Size 64 128 256

64 0.4409 0.4436 0.4445 64 0.4102 0.4105 0.4103

128 0.4425 0.4444 0.4450 128 0.4106 0.4116 0.4109

256 0.4428 0.4445 0.4463 256 0.4100 0.4119 0.4120

contextual + phone history features only phone history features
Number of Neurons Number of Neurons

Batch Size 64 128 256 Batch Size 64 128 256

64 0.4034 0.4035 0.4033 64 0.3728 0.3730 0.3727

128 0.4039 0.4041 0.4054 128 0.3727 0.3730 0.3729

256 0.4054 0.4055 0.4052 256 0.3727 0.3727 0.3731

Table 8: Scores of the full hyperparameter tuning of the MLP with Embeddings
on different feature subsets derived from the validation set



E appendix e 40

Cold-start MLP on full feature subset

full feature subset
Number of Neurons

Batch Size 64 128 256

64 0.3749 0.3738 0.3754
128 0.3736 0.3730 0.3729

256 0.3712 0.3704 0.3728

Table 9: Scores of the full hyperparameter tuning of the cold-start MLP with
embeddings on the full feature subset derived from the validation set

LSTM with lookback range 10

full feature subset incl. oracle ones full feature subset
Number of Neurons Number of Neurons

Batch Size 64 128 256 Batch Size 64 128 256

64 0.4572 0.4602 0.4598 64 0.4255 0.4271 0.4263

128 0.4579 0.4600 0.4615 128 0.4267 0.4264 0.4275

256 0.4571 0.4593 0.4619 256 0.4267 0.4276 0.4279

contextual + phone history features only phone history features
Number of Neurons Number of Neurons

Batch Size 64 128 256 Batch Size 64 128 256

64 0.4246 0.4245 0.4248 64 0.4176 0.4165 0.4180

128 0.4254 0.4255 0.4254 128 0.4174 0.4182 0.4183
256 0.4251 0.4261 0.4256 256 0.4177 0.4178 0.4182

Table 10: Scores of the hyperparameter tuning of the LSTM regarding the num-
ber of neurons and the batch size on different feature subset derived from the
validation set using the lookback range of 10



E appendix e 41

Cold-start LSTM with lookback range 10

full feature subset
Number of Neurons

Batch Size 64 128 256

64 0.4054 0.4054 0.4058
128 0.4042 0.4045 0.4052

256 0.4027 0.4033 0.4046

Table 11: Scores of the hyperparameter tuning of the cold-start LSTM regarding
the number of neurons and the batch size on the full feature subset derived from
the validation set using the lookback range of 10

All LSTMs with different lookback ranges

Accuracy

L: 5 L: 10 L:20

full subset incl. oracle 0.4554 0.4619 0.4636
full subset 0.4212 0.4279 0.4296

contextual and history 0.4185 0.4261 0.4275
only history 0.4086 0.4181 0.4225

cold-start 0.3970 0.4058 0.4061

Table 12: Scores of the hyperparameter tuning of the LSTM regarding the lookback
range denoted as L on different feature subsets and for the cold-start problem on
the validation set



F appendix f 42

f appendix f

train valid test training time

1 0.4181 0.4114 0.4059 0:18:22

2 0.4199 0.4118 0.4060 0:21:32

3 0.4205 0.4129 0.4063 0:22:32

Average 0.4195 0.4120 0.4061 0:20:48

Table 13: Performance of MLP trained on the full feature subset over three different
training periods with a resampled order of the training records using the best
hyperparameters including the training time and the average

train valid test training time

1 0.4419 0.4295 0.4256 11:07:10

2 0.4369 0.4296 0.4273 9:57:10

3 0.4379 0.4296 0.4257 10:36:00

Average 0.4389 0.4296 0.4262 10:33:27

Table 14: Performance of LSTM trained on the full feature subset over three
different training periods with a resampled order of the training batches using
the best hyperparameters including the training time and the average



G appendix g 43

g appendix g

Figure 16: Accuracy plot of the training phase of the MLP on the full feature
subset by the use of the best hyperparameters showing training and validation
accuracy in comparison. Source: the author’s illustration obtained using Python

Figure 17: Accuracy plot of the training phase of the LSTM on the full feature
subset by the use of the best hyperparameters showing training and validation
accuracy in comparison. Source: the author’s illustration obtained using Python



H appendix h 44

h appendix h

Figure 18: Accuracy plot of the training phase of the LSTM for the cold-start
problem, using the full feature subset and the best hyperparameters, showing
training and validation accuracy in comparison. Source: the author’s illustration
obtained using Python

Figure 19: Accuracy plot of the training phase of the MLP for the cold-start
problem on the full feature subset, using the best hyperparameters, and showing
training and validation accuracy in comparison. Source: the author’s illustration
obtained using Python


	Introduction and Research Goal
	Motivation and Relevance
	Research Questions

	Literature Review
	Prediction of Smartphone Engagement
	Next-App Prediction for Smartphones
	Dwell Time Prediction for Streaming Services

	Methodology
	Models: Comparison of MLP, RNN, LSTM, and GRU
	Proposed LSTM Structure - Stateful vs. Stateless Training
	Treatment of Categorical Features - Embeddings Method
	Baselines

	Experimental Setup
	Description of the Dataset
	Data Cleaning
	Missing Data Treatment
	Feature Engineering and Transformation
	User-Related Features
	Contextual Features
	App-History Related Features
	Oracle Features
	Feature Transformation

	Construction of Target
	Training-Validation-Testing Split
	Data Pre-processing for LSTM and MLP
	Hyperparameter Tuning
	Robustness Check
	Evaluation Metrics
	Software

	Results
	Hyperparameter Tuning of the Neural Networks
	Performance of the Baselines, the MLP, and the LSTM on the full feature subset
	Error Analysis
	Performance of the MLP and the LSTM on different Feature Subsets
	Performance of the LSTM on the Cold-Start Problem

	Discussion
	Predictive Performance of the MLP and LSTM compared to the Baselines
	Discussion of the Model Performance on different Feature Subsets and the Trade-Off between User-Privacy, Computational Efficiency, and Accuracy
	Capabilities of Generalization
	Limitations and Further Recommendations
	Contributions and Societal Impact

	Conclusion
	Data Source/Code/Ethics Statement
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

